
Midterm 2 Review B Name:
Date: 23/10/2022
Math 54: Fall 2022

Problem 1

True/False. Justify your answers.

1. If A is row equivalent to B they have the same eigenvalues.

2. If A is non-invertible, it has at least one zero eigenvalue.

3. Let T : V ! V be a linear transformation and B, C be two bases for V . Then AB,B and AC,C

have the same eigenvalues.

Problem 2
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Compute A5.

Problem 3

True/False. Justify your answers.

1. If � is an eigenvalues of A, it has geometric multiplicity at least 1.

2. If an n ⇥ n matrix A has an eigenvalue � with geometric multiplicity n, then A is a diagonal
matrix.

3. Any eigenvector of a matrix A is in the column space of A.

4. If a square matrix A is diagonalisable and invertible, then A�1 is also diagonalisable.
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Problem 4

Suppose V and W are vector spaces and T : V ! W is an invertible linear map. Suppose B =
{v1, ...,vn} is a basis of V . Show that S = {T (v1), ..., T (vn)}is a basis of W.

Problem 5

Find a basis for the Col(A)?,Col(B)?
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Problem 6

Let W be a subspace of Rn. Show that

W? = {u 2 Rn such that u ·w = 0 for all w 2 W}

is a subspace of Rn.
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Problem 7

True/False. Justify your answers.

1. u · v � v · u = 0

2. If kuk2 + kvk2 = ku+ vk2, then u and v are orthogonal.

3. For an m ⇥ n matrix A, vectors in the null space of A are orthogonal to vectors in the row
space of A.

Problem 8

Determine if the sets of vectors is orthonormal. If it is only orthogonal, normalise the vectors to
produce an orthonormal set. 2
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Problem 9

Determine whether each of these sets are an orthogonal basis for R3
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Problem 10

Find the distance of the point x =
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5 from the two dimensional subspace W ⇢ R3 spanned by
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Problem 11

True/False. Justify your answers.

1. Not every orthogonal set in Rn is linearly independent.

2. If the columns of an m⇥ n matrix A are orthonormal, then kxk = kAxk.

3. The orthogonal projection of y onto v is the same as the orthogonal projection of y onto cv
whenever c 6= 0.

4. A matrix with orthonormal columns is invertible.

Problem 12

Find an orthogonal basis for the null space of

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