Problem 1
True/False. Justify your answers.

1. If A is row equivalent to B they have the same eigenvalues. Fate
2. If A is non-invertible, it has at least one zero eigenvalue. True
3. Let $T: V \rightarrow V$ be a linear transformation and \mathcal{B}, \mathcal{C} be two bases for V. Then $A_{B, B}$ and $A_{C, C}$ have the same eigenvalues.

Problem 2
Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], \underline{\underline{A}}=\underline{\underline{P}} \underline{\underline{D}} \underline{\underline{P}}^{-1}, \underline{\underline{A}}^{5}=\underline{\underline{P}} \underline{\underline{D}}^{\top} \underline{\underline{P}}^{-1}
$$

Compute A^{5}.

$$
\text { evalb: }|A-A I|=\left|\begin{array}{ccc}
1-1 & 0 & -1 \\
0 & -1 & 0 \\
- & 0 & 0
\end{array}\right|=(1-A)\left|\begin{array}{cc}
(-A & -1 \\
-1 & 1-A
\end{array}\right|=C(-A)\left(\Lambda^{2}-2 A\right)=0
$$

$$
A=0,1,2
$$

T 2. If an $n \times n$ matrix A has an eigenvalue λ with geometric multiplicity n, then A is a diagonal matrix.
F 3. Any eigenvector of a matrix A is in the column space of A.
T 4. If a square matrix A is diagonalisable and invertible, then A^{-1} is also diagonalisable.

$$
\begin{aligned}
& \text { eves: } \\
& N=0, \quad A=1, \quad A=2_{1}, \quad \rightarrow \underline{P}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \quad\left(\underline{D}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)\right. \\
& \underline{v}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \quad \underline{v}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \underline{v}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \\
& \text { Problem } 3 \\
& \text { True/False. Justify your answers. } \\
& \text { T 1. If } \lambda \text { is an eigenvalues of } A \text {, it has geometric multiplicity at least } 1 \text {. } \\
& \begin{array}{l}
\rightarrow \underline{D}^{5}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 32
\end{array}\right) \quad \underline{P^{-1}}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right) \\
\\
\text { niltiplicity at least } 1 .
\end{array}
\end{aligned}
$$

Problem 4
Suppose V and W are vector spaces and $T: V \rightarrow W$ is an invertible linear map. Suppose $\mathcal{B}=$ $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Show that $\mathcal{S}=\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a basis of W.

Show In. melymident.

$$
\begin{aligned}
& \alpha_{1} T\left(\underline{v}_{1}\right)+\ldots+\alpha_{n} T\left(\omega_{n}\right)=0 \\
& \begin{array}{l}
\rightarrow T\left(\alpha_{1} 七_{1}\right)+\ldots+\tau\left(\alpha_{n} v_{n}\right)=0, T(\underbrace{\alpha_{1} \varepsilon_{1}+\cdots+\alpha_{n} \varepsilon_{n}}_{=0})=0 \\
\text { Problem } 5
\end{array} \\
& \text { Find a basis for the } \operatorname{Col}(A)^{\perp}, \operatorname{Col}(B)^{\perp} \\
& \Rightarrow \alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0 \text {, as } V \text { band } .
\end{aligned}
$$

$\cot (A)^{1}=\operatorname{Null}\left(\hat{A}^{\top}\right) \quad A=\left[\begin{array}{cc}1 & 0 \\ 0 & 1 \\ -1 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 3 \\ 0 & 1 \\ 2 & 0\end{array}\right]$

$$
\begin{array}{ll}
\underline{A}^{\top}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) & \underline{B}^{\top}=\left(\begin{array}{lll}
1 & 0 & 2 \\
3 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1-6
\end{array}\right) \\
\operatorname{And} \underline{A^{\top}}=\operatorname{Som}\left\{\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right\} & \operatorname{and}\left(\underline{S^{\top}}=\left\{\operatorname{Spen}\left\{\left(\begin{array}{l}
2 \\
6 \\
1
\end{array}\right)\right\}\right.\right.
\end{array}
$$

Problem 6
Let W be a subspace of \mathbb{R}^{n}. Show that

$$
W^{\perp}=\left\{\mathbf{u} \in \mathbb{R}^{n} \text { such that } \mathbf{u} \cdot \mathbf{w}=0 \text { for all } \mathbf{w} \in W\right\}
$$

is a subspace of \mathbb{R}^{n}.

$$
\begin{aligned}
& \text { 1) } \begin{array}{l}
\underline{\theta} c W^{\perp}, \underline{o} \cdot \underline{w}=0 \\
\text { 2) } \underline{v}_{1}, w_{2} \in W^{\perp},\left(v_{1}+v_{2}\right) \cdot \underline{w}=\underline{v}_{1} \cdot \underline{w}+\underline{v}_{2} \cdot \underline{w} \\
\rightarrow v_{1}+\underline{v}_{2} \in W^{\perp} \\
\text { 3) } \underline{v} \in W^{\perp}, c \underline{w} \cdot w=c(\underline{v} \cdot \underline{w})=0 \\
\rightarrow \underline{v} \in W^{\perp}
\end{array}
\end{aligned}
$$

Problem 7
True/False. Justify your answers.

1. $\mathbf{u} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{u}=0$
2. If $\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}=\|\mathbf{u}+\mathbf{v}\|^{2}$, then \mathbf{u} and \mathbf{v} are orthogonal.
3. For an $m \times n$ matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.

Problem 8
Determine if the sets of vectors is orthonormal. If it is only orthogonal, normalise the vectors to produce an orthonormal set.

$$
\begin{array}{ccc}
{\left[\begin{array}{c}
\sqrt{2} \\
3 \\
3
\end{array}\right],} & {\left[\begin{array}{c}
6 \\
-\sqrt{2} \\
-\sqrt{2}
\end{array}\right],} & {\left[\begin{array}{c}
0 \\
-\sqrt{10} \\
\sqrt{10}
\end{array}\right]} \\
\underset{\sim}{v} & \underset{\sim}{v} & \underset{v}{v} \\
{\underset{\sim}{2}}^{[} & \underline{v}_{3}
\end{array}
$$

$$
\begin{aligned}
& \underline{v}_{1} \cdot \underline{v}_{2}=0 \\
& \underline{v}_{1} \cdot \underline{z}_{2}=0, \text { anther } \\
& \underline{z}_{2} \cdot \underline{x}_{2}=0
\end{aligned}
$$

$$
\left.\begin{array}{l}
\left\|\underline{v}_{1}\right\|=\sqrt{2+9+9}=\sqrt{20} \\
\left\|\underline{v}_{2}\right\|=\sqrt{36+2+2}=\sqrt{40} \\
\left\|v_{2}\right\|=\sqrt{10+0}=\sqrt{20} \\
\text { Problem } 9
\end{array}\right\} \rightarrow\left\{\frac{1}{\sqrt{20}}\left(\begin{array}{c}
\sqrt{2} \\
3 \\
3
\end{array}\right), \frac{1}{\sqrt{200}}\left(\begin{array}{c}
6 \\
-\sqrt{2} \\
-\sqrt{2}
\end{array}\right) \frac{1}{\sqrt{20}}\binom{0}{-\sqrt{100}}\right\}
$$

Determine whether each of these sets are an orthogonal basis for \mathbb{R}^{3}

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right\},\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
4 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]\right\}
$$

woe
orthogonal
Outhogunal

Problem 10
Find the distance of the point $\mathbf{x}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$ from the two dimensional subspace $W \subset \mathbb{R}^{3}$ spanned by

1. Not every orthogonal set in \mathbb{R}^{n} is linearly independent. T
2. If the columns of an $m \times n$ matrix A are orthonormal, then $\|\mathbf{x}\|=\|A \mathbf{x}\|$. T
3. The orthogonal projection of \mathbf{y} onto \mathbf{v} is the same as the orthogonal projection of \mathbf{y} onto $c \mathbf{v}$ whenever $c \neq 0 . \quad T$
4. A matrix with orthonormal columns is invertible. \square

$$
F
$$

Problem 12
Find an orthogonal basis for the null space of

$$
\left.\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right] \sim\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -4 & -8 & -12
\end{array}\right)
$$

$$
\begin{aligned}
& \left.\sim\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & -2 \\
0 & 1 & 2
\end{array}\right) \quad \longrightarrow \quad \begin{array}{l}
x_{1}-x_{3}-2 x_{4}
\end{array}\right)=0
\end{aligned}
$$

> Problem 11
> True/False. Justify your answers.

$$
\begin{aligned}
& =\frac{-2}{2}\left(\begin{array}{l}
1 \\
0 \\
-1
\end{array}\right)+\frac{6}{3}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)
\end{aligned}
$$

