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Problem 1
True/False. Justify your answers.
-
1. If A is row equivalent to B they have the same eigenvalues. M’Cr
2. If Ais non-invertible, it has at least one zero eigenvalue. ‘HI‘V\L

3. LetT : V — V be a linear transformation and B,C be two bases for V. Then Ag g and Ac ¢

have the same eigenvalues. —EW‘L
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T 1. If Mis an eigenvalues of 4, it has geometric multiplicity at least 1. = ~& O 6

T 2. If an n x n matrix A has an eigenvalue A\ with geometric multiplicity n, then A is a diagonal
matrix.

F 3. Any eigenvector of a matrix A is in the column space of A.

T 4. If a square matrix A is diagonalisable and invertible, then A~! is also diagonalisable.



Problem 4

Suppose V and W are vector spaces and 7' : V — W is an invertible linear map. Suppose B =
{Vv1,...,vp} is a basis of V. Show that S = {T'(v1), ..., T'(v,)}is a basis of W.
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Problem 6

Let W be a subspace of R"™. Show that

W+ = {u € R" such that u - w = 0 for all w € W}

is a subspace of R".
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Problem 7
True/False. Justify your answers.
l.u-v—-v-u=0 T
2. If |lul|? + ||v||?> = ||u + v||?, then u and v are orthogonal. T

3. For an m x n matrix A, vectors in the null space of A are orthogonal to vectors in the row

space of A. T

Problem 8

Determine if the sets of vectors is orthonormal. If it is only orthogonal, normalise the vectors to
produce an orthonormal set.
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Problem 9

Determine whether each of these sets are an orthogonal basis for R?
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Problem 10

3
Find the distance of the point x = {2] from the two dimensional subspace W C R? spanned by
)

Problem 11 [
True/False. Justify your answers. B f' T S\ (,"“ -

1. Not every orthogonal set in R” is linearly independent. T

2. If the columns of an m x n matrix A are orthonormal, then ||x| = || Ax]|. _r

3. The orthogonal projection of y onto v is the same as the orthogonal projection of y onto cv
whenever ¢ # 0.

4. A matrix with orthonormal columns is invertible. F

Problem 12

Find an orthogonal basis for the null space of
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