Name: ____

Problem 1

True/False. Justify your answers.

- 1. If A is row equivalent to B they have the same eigenvalues.
- 2. If *A* is non-invertible, it has at least one zero eigenvalue.
- 3. Let $T: V \to V$ be a linear transformation and \mathcal{B}, \mathcal{C} be two bases for V. Then $A_{B,B}$ and $A_{C,C}$ have the same eigenvalues.

Problem 2

Let

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Compute A^5 .

Problem 3

True/False. Justify your answers.

- 1. If λ is an eigenvalues of A, it has geometric multiplicity at least 1.
- 2. If an $n\times n$ matrix A has an eigenvalue λ with geometric multiplicity n, then A is a diagonal matrix.
- 3. Any eigenvector of a matrix *A* is in the column space of *A*.
- 4. If a square matrix A is diagonalisable and invertible, then A^{-1} is also diagonalisable.

Problem 4

Suppose V and W are vector spaces and $T: V \to W$ is an invertible linear map. Suppose $\mathcal{B} = {\mathbf{v}_1, ..., \mathbf{v}_n}$ is a basis of V. Show that $\mathcal{S} = {T(\mathbf{v}_1), ..., T(\mathbf{v}_n)}$ is a basis of W.

Problem 5

Find a basis for the $\mathrm{Col}(A)^{\perp},\mathrm{Col}(B)^{\perp}$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 2 & 0 \end{bmatrix}$$

Problem 6

Let *W* be a subspace of \mathbb{R}^n . Show that

$$W^{\perp} = \{ \mathbf{u} \in \mathbb{R}^n \text{ such that } \mathbf{u} \cdot \mathbf{w} = 0 \text{ for all } \mathbf{w} \in W \}$$

is a subspace of \mathbb{R}^n .

Problem 7

True/False. Justify your answers.

- 1. $\mathbf{u} \cdot \mathbf{v} \mathbf{v} \cdot \mathbf{u} = 0$
- 2. If $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$, then \mathbf{u} and \mathbf{v} are orthogonal.
- 3. For an $m \times n$ matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.

Problem 8

Determine if the sets of vectors is orthonormal. If it is only orthogonal, normalise the vectors to produce an orthonormal set.

$\left\lceil \sqrt{2} \right\rceil$		[6]		
3	,	$\left -\sqrt{2}\right $,	$-\sqrt{10}$
3	,	$-\sqrt{2}$		$\sqrt{10}$

Problem 9

Determine whether each of these sets are an orthogonal basis for \mathbb{R}^3

$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} -1\\1\\1 \end{bmatrix} \right\}, \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\4\\-1 \end{bmatrix}, \begin{bmatrix} 2\\1\\2 \end{bmatrix} \right\}$$

Problem 10

Find the distance of the point $\mathbf{x} = \begin{bmatrix} 3\\2\\5 \end{bmatrix}$ from the two dimensional subspace $W \subset \mathbb{R}^3$ spanned by $\mathbf{u}_1 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$

Problem 11

True/False. Justify your answers.

- 1. Not every orthogonal set in \mathbb{R}^n is linearly independent.
- 2. If the columns of an $m \times n$ matrix A are orthonormal, then $\|\mathbf{x}\| = \|A\mathbf{x}\|$.
- 3. The orthogonal projection of y onto v is the same as the orthogonal projection of y onto cv whenever $c \neq 0$.
- 4. A matrix with orthonormal columns is invertible.

Problem 12

Find an orthogonal basis for the null space of

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$