\qquad

Problem 1

True/False. Justify your answers.

1. If A is row equivalent to B they have the same eigenvalues.
2. If A is non-invertible, it has at least one zero eigenvalue.
3. Let $T: V \rightarrow V$ be a linear transformation and \mathcal{B}, \mathcal{C} be two bases for V. Then $A_{B, B}$ and $A_{C, C}$ have the same eigenvalues.

Problem 2

Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

Compute A^{5}.

Problem 3

True/False. Justify your answers.

1. If λ is an eigenvalues of A, it has geometric multiplicity at least 1 .
2. If an $n \times n$ matrix A has an eigenvalue λ with geometric multiplicity n, then A is a diagonal matrix.
3. Any eigenvector of a matrix A is in the column space of A.
4. If a square matrix A is diagonalisable and invertible, then A^{-1} is also diagonalisable.

Problem 4

Suppose V and W are vector spaces and $T: V \rightarrow W$ is an invertible linear map. Suppose $\mathcal{B}=$ $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V. Show that $\mathcal{S}=\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a basis of W .

Problem 5

Find a basis for the $\operatorname{Col}(A)^{\perp}, \operatorname{Col}(B)^{\perp}$

$$
A=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 0
\end{array}\right], B=\left[\begin{array}{ll}
1 & 3 \\
0 & 1 \\
2 & 0
\end{array}\right]
$$

Problem 6

Let W be a subspace of \mathbb{R}^{n}. Show that

$$
W^{\perp}=\left\{\mathbf{u} \in \mathbb{R}^{n} \text { such that } \mathbf{u} \cdot \mathbf{w}=0 \text { for all } \mathbf{w} \in W\right\}
$$

is a subspace of \mathbb{R}^{n}.

Problem 7

True/False. Justify your answers.

1. $\mathbf{u} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{u}=0$
2. If $\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}=\|\mathbf{u}+\mathbf{v}\|^{2}$, then \mathbf{u} and \mathbf{v} are orthogonal.
3. For an $m \times n$ matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.

Problem 8

Determine if the sets of vectors is orthonormal. If it is only orthogonal, normalise the vectors to produce an orthonormal set.

$$
\left[\begin{array}{c}
\sqrt{2} \\
3 \\
3
\end{array}\right],\left[\begin{array}{c}
6 \\
-\sqrt{2} \\
-\sqrt{2}
\end{array}\right],\left[\begin{array}{c}
0 \\
-\sqrt{10} \\
\sqrt{10}
\end{array}\right]
$$

Problem 9

Determine whether each of these sets are an orthogonal basis for \mathbb{R}^{3}

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right\},\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
4 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]\right\}
$$

Problem 10

Find the distance of the point $\mathbf{x}=\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$ from the two dimensional subspace $W \subset \mathbb{R}^{3}$ spanned by $\mathbf{u}_{1}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$

Problem 11

True/False. Justify your answers.

1. Not every orthogonal set in \mathbb{R}^{n} is linearly independent.
2. If the columns of an $m \times n$ matrix A are orthonormal, then $\|\mathbf{x}\|=\|A \mathbf{x}\|$.
3. The orthogonal projection of \mathbf{y} onto \mathbf{v} is the same as the orthogonal projection of \mathbf{y} onto $c \mathbf{v}$ whenever $c \neq 0$.
4. A matrix with orthonormal columns is invertible.

Problem 12

Find an orthogonal basis for the null space of

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right]
$$

