Problem 1
What conditions must a set $A \subset B$ satisfy to be a subspace of B ?

$$
0 \in A, \quad a_{1}+a_{2} \in A
$$

Problem 2

1) $0 G A$
2) Closure adbotion
3) Close sealer mutifigh

Consider a linear operator $T: V \rightarrow W$ is a subspace. Is the null space of T a subset of V or of W ? Show that it is a subspace of V or W.

$$
\text { Subito of } V
$$

$$
T(0)=0, \quad v_{1}, v_{2} \in \operatorname{Null} T \quad \text { vemull } T
$$

Problem 3

$$
T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)=0 \quad T(w)=c T(v)=0
$$

For each of the following, show that the set of vectors is a basis and find the coordinate of the following vectors in their respective bases:

Problem 4
Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ and rank of T be 2 . What is the nullity of T ?

Problem 5
Find the change of basis matrix $P_{C \leftarrow B}$

$$
\begin{aligned}
& \mathcal{B}=\left\{\left[\begin{array}{c}
0 \\
-2 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
5 \\
3
\end{array}\right],\left[\begin{array}{l}
7 \\
1 \\
1
\end{array}\right]\right\}, \mathcal{C}=\left\{\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right],\left[\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right],\left[\begin{array}{l}
5 \\
4 \\
0
\end{array}\right]\right\} \\
& C \in B=P_{C}^{-1}=P=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Problem 6
Find the matrix $A_{B, C}$ of the linear transformation T relative to the bases \mathcal{B}, \mathcal{C}. Is this transformation one-to-one or onto?

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
5 x_{1}-x_{2} \\
6 x_{1}+3 x_{2}
\end{array}\right], \mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}, \mathcal{C}=\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right\} \\
& A_{a, c}=\left(\left[T c_{c}\right)_{c}\left[\left(c_{c}\right)\right)_{c}\right)=\left(\left[\begin{array}{l}
\left.\left.\left(\begin{array}{c}
1 \\
2
\end{array}\right]_{c}\left[\binom{3}{4}\right]_{c}\right)\right]
\end{array}\right.\right. \\
& =\left(\begin{array}{cc}
-15 & -17 \\
10 & 10 \\
17 & 16
\end{array}\right)
\end{aligned}
$$

Problem 7
Consider the map $T: \mathbb{P}^{3} \rightarrow \mathbb{P}^{2}$ where $T(f)=f^{\prime}$.

1. Find the matrix of T with respect to the standard bases. $\mathcal{E}=\left\{\left(, x, x^{2}, x^{5}\right\}\right.$
2. Find bases for $\mathbb{P}^{3}, \mathbb{P}^{2}$ such that the matrix for T relative to these bases is

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

3. Is this map one-to-one or onto?
i) $T(1)=0, T(x)=1, T\left(x^{2}\right)=2 x, T\left(x^{3}\right)=3 x^{2},[T]_{\varepsilon}=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$ 2) $B=\left\{x, \frac{1}{2} x^{2}, \frac{1}{3} x^{3}, 1\right\}$
c) Owlo (Plot cachou), Not 1-b-1 (Nophat theachan)

Problem 8
Find the determinants of the following matrices

$$
A=\left[\begin{array}{ll}
2 & -4 \\
5 & -1
\end{array}\right], B=\underbrace{\left[\begin{array}{ccc}
1 & -4 & -2 \\
0 & 5 & -1 \\
0 & 0 & 7
\end{array}\right]}_{18}, C=C=\left[\begin{array}{lll}
1 & 1 & -2 \\
1 & 2 & -1 \\
1 & 0 & -1
\end{array}\right]
$$

Problem 9
Let $T: V \rightarrow V$ be a linear transformation. What does it mean for \mathbf{v} to be an eigenvector of T ?

$$
T(\underline{v})=\lambda \underline{v}
$$

Problem 10
Consider $T: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ defined by $T(f)=f(0)+f^{\prime} \cdot x+f(0) \cdot x^{2}$

1. Is $f(x)=1$ an eigenvector of this transformation? If so what is the corresponding eigenvalue?
2. Is $f(x)=x^{2}$ an eigenvector of this transformation? If so what is the corresponding eigenvalue?

$$
\begin{aligned}
&1) T(f(x)=1)=1+0 \cdot x+1 \cdot x^{2}=1+x^{2} \neq A \cdot 1 \\
&2) T\left(f(x)=x^{2}\right)=0+2 x \cdot x+0 \cdot x^{2} \\
& \text {-Not eve e } \\
& \text { Problem 11 }=2 x^{2} \quad \text { - isevee, } 1+\text { evan }=?
\end{aligned}
$$

What is the characteristic polynomial for a square matrix A ?

$$
\operatorname{det}(\underline{A}-1 \underline{\underline{I}})
$$

Problem 12
Find the characteristic polynomial and all eigenvalues of the following matrix. Is the matrix dagonalisable? If so diagonalise it.

$$
\begin{aligned}
& \boldsymbol{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right] \quad \quad \quad(H)\left(\lambda^{2}-3 \lambda\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Compute the following given that } A=P=\underline{P} D P^{-1}, \underline{P}=\left(\begin{array}{ccc}
-2 & \frac{1}{2} & 1 \\
0 & -312 & 0 \\
0 & 1 & 0
\end{array}\right), \underline{D}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 10 \\
0 & 0 & 0
\end{array}\right) \\
& \mathbf{u}=\left[\begin{array}{c}
3 \\
-4 \\
-5
\end{array}\right], \mathbf{v}=\left[\begin{array}{c}
6 \\
-2 \\
3
\end{array}\right]
\end{aligned}
$$

1. $\mathbf{u} \cdot \mathbf{v}=18+8-15=11$
2. $\operatorname{proj}_{\mathrm{u}} \mathrm{u}=4$
3. $\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\underline{\underline{y} \cdot \underline{u}} \underline{\underline{u} \cdot \underline{y}}=\frac{11}{9+16+25}\left(\begin{array}{c}3 \\ -4 \\ -5\end{array}\right)=\frac{11}{50}\left(\begin{array}{c}3 \\ -4 \\ -5\end{array}\right)$

Problem 14
Find the distance between the two vectors

$$
\begin{gathered}
\mathbf{u}=\left[\begin{array}{c}
3 \\
-4 \\
-5
\end{array}\right], \mathbf{v}=\left[\begin{array}{c}
6 \\
-2 \\
3
\end{array}\right] \rightarrow \sqrt{7}-\underline{v} \| \\
=\left\|\begin{array}{l}
-3 \\
-8 \\
-8
\end{array}\right\|=\sqrt{9+4+64}
\end{gathered}
$$

Problem 15
Use the Gram-Schmidt process to find a set of orthonormal vectors that have the same span as

$$
\begin{aligned}
& \left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right]\right\} . \quad \underline{w}_{1}=\left(\begin{array}{l}
b \\
0 \\
0
\end{array}\right), \quad \underline{w}_{2}=\underline{v}_{2}-\operatorname{proj} \underline{w_{2}}=\left(\begin{array}{l}
1 \\
2 \\
0 \\
i
\end{array}\right)-\frac{\underline{w}_{1} \cdot \underline{v}_{2}}{\underline{w}_{1} \cdot \underline{w}_{1}} \underline{w}_{1} \\
& \begin{array}{lll}
\hat{i} & \hat{v}_{2} & 9 \\
\underset{\sim}{n} & \underline{v}_{2} & \underline{v}_{3}
\end{array} \\
& \underline{w}_{3}=\underline{v}_{3}-\underbrace{p w_{w_{1}} w_{3}}-\underbrace{1} \operatorname{voj}_{w_{2}} \underline{v}_{3}=\left(\begin{array}{c}
0 \\
315 \\
-1 \\
-615
\end{array}\right) \\
& \left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\frac{\underline{\underline{w}}_{3} \cdot \underline{w}_{1}}{\underline{w}_{1} \cdot \underline{w}_{1}} \underline{w}_{1} \quad{\underline{\underline{w}} \cdot 3 \cdot \underline{w}_{2}}_{\underline{w}_{2} \cdot \underline{w}_{2}}^{\underline{w}_{2}}=\frac{1}{5}\left(\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

