\qquad

Problem 1

What conditions must a set $A \subset B$ satisfy to be a subspace of B ?

Problem 2

Consider a linear operator $T: V \rightarrow W$ is a subspace. Is the null space of T a subset of V or of W ? Show that it is a subspace of V or W.

Problem 3

For each of the following, show that the set of vectors is a basis and find the coordinate of the following vectors in their respective bases:

1. $\mathbf{v}=\left[\begin{array}{c}1 \\ 4 \\ -3\end{array}\right], \mathcal{B}=\left\{\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$
2. $\mathbf{v}=1+x+x^{2}, \mathcal{B}=\left\{1,1-2 x, x-2 x^{2}\right\}$

Problem 4

Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ and rank of T be 2 . What is the nullity of T ?

Problem 5

Find the change of basis matrix $P_{C \leftarrow B}$

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
0 \\
-2 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
5 \\
3
\end{array}\right],\left[\begin{array}{l}
7 \\
1 \\
1
\end{array}\right]\right\}, \mathcal{C}=\left\{\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right],\left[\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right],\left[\begin{array}{l}
5 \\
4 \\
0
\end{array}\right]\right\}
$$

Problem 6

Find the matrix $A_{B, C}$ of the linear transformation T relative to the bases \mathcal{B}, \mathcal{C}. Is this transformation one-to-one or onto?

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
5 x_{1}-x_{2} \\
6 x_{1}+3 x_{2}
\end{array}\right], \mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}, \mathcal{C}=\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right\}
$$

Problem 7

Consider the map $T: \mathbb{P}^{3} \rightarrow \mathbb{P}^{2}$ where $T(f)=f^{\prime}$.

1. Find the matrix of T with respect to the standard bases.
2. Find bases for $\mathbb{P}^{3}, \mathbb{P}^{2}$ such that the matrix for T relative to these bases is

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

3. Is this map one-to-one or onto?

Problem 8

Find the determinants of the following matrices

$$
A=\left[\begin{array}{ll}
2 & -4 \\
5 & -1
\end{array}\right], B=\left[\begin{array}{ccc}
1 & -4 & -2 \\
0 & 5 & -1 \\
0 & 0 & 7
\end{array}\right], C=\left[\begin{array}{ccc}
1 & 1 & -2 \\
1 & 2 & -1 \\
1 & 0 & -1
\end{array}\right]
$$

Problem 9

Let $T: V \rightarrow V$ be a linear transformation. What does it mean for \mathbf{v} to be an eigenvector of T ?

Problem 10

Consider $T: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ defined by $T(f)=f(0)+f^{\prime} \cdot x+f(0) \cdot x^{2}$

1. Is $f(x)=1$ an eigenvector of this transformation? If so what is the corresponding eigenvalue?
2. Is $f(x)=x^{2}$ an eigenvector of this transformation? If so what is the corresponding eigenvalue?

Problem 11

What is the characteristic polynomial for a square matrix A ?

Problem 12

Find the characteristic polynomial and all eigenvalues of the following matrix. Is the matrix diagonalisable? If so diagonalise it.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Problem 13

Compute the following given that

$$
\mathbf{u}=\left[\begin{array}{c}
3 \\
-4 \\
-5
\end{array}\right], \mathbf{v}=\left[\begin{array}{c}
6 \\
-2 \\
3
\end{array}\right]
$$

1. $\mathbf{u} \cdot \mathrm{v}$
2. $\operatorname{proj}_{\mathrm{u}} \mathbf{u}$
3. $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$
4. $\operatorname{proj}_{\mathrm{v}} \mathrm{v}$

Problem 14

Find the distance between the two vectors

$$
\mathbf{u}=\left[\begin{array}{c}
3 \\
-4 \\
-5
\end{array}\right], \mathbf{v}=\left[\begin{array}{c}
6 \\
-2 \\
3
\end{array}\right]
$$

Problem 15

Use the Gram-Schmidt process to find a set of orthonormal vectors that have the same span as $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1 \\ -1\end{array}\right]\right\}$.

