Name: _____

Problem 1

What are the properties of a linear transformation $T: X \to Y$?

Problem 2

Consider the following matrices

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

1. What are the domain and codomains for the corresponding linear transformations T_A, T_B ?

2. Are these linear transformations one-to-one, onto, or a bijection?

Problem 3

- 1. Define the range and kernel of a linear transformation.
- 2. Find the range and kernel of the linear transformation T_A given by the matrix $A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix}$.

Problem 4

- 1. Give an example of a basis of \mathbb{R}^3 . What conditions must a set of vectors have in order to be a basis?
- 2. Define the dimension of subspace W.

Problem 5

Let $T : \mathbb{R}^5 \to \mathbb{R}^3$ and rank of T be 2. What is the nullity of T?

The problems from this point are slightly more tricky. They will test your understanding.

Problem 6

Let $T : \mathbb{R}^n \to \mathbb{R}^m$. Let A be the associated matrix.

- 1. What is the size of *A*?
- 2. Write whether each of the following statements means that T is one-to-one, onto, or bijective, or none.
 - (a) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, if $\mathbf{x} \neq \mathbf{y}$ then $T(\mathbf{x}) \neq T(\mathbf{y})$.
 - (b) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, if $\mathbf{x} = \mathbf{y}$ then $T(\mathbf{x}) = T(\mathbf{y})$.
 - (c) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, if $T(\mathbf{x}) = T(\mathbf{y})$ then $\mathbf{x} = \mathbf{y}$.
 - (d) For every $\mathbf{y} \in \mathbb{R}^m$, there exists $\mathbf{x} \in \mathbb{R}^n$ such that $T(\mathbf{x}) = \mathbf{y}$.
 - (e) A row reduces to have a pivot in every column.
 - (f) A row reduces to have a pivot in every row.
 - (g) $A\mathbf{x} = \mathbf{b}$ has a solution for every **b**.
 - (h) Any solution to $A\mathbf{x} = \mathbf{b}$ is unique.
 - (i) The columns of *A* are linearly independent.
 - (j) The columns of A span \mathbb{R}^m .

Problem 6

Let **u** and **v** be vectors in \mathbb{R}^n . Explain why every vector in $\text{Span}(\mathbf{u}, \mathbf{v})$ is also in $\text{Span}(\mathbf{u}, \mathbf{v} - \mathbf{u})$.

Problem 7

Label each of the following true/false.

- 1. If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent for some $\mathbf{b} \in \mathbb{R}^m$.
- 2. If S is a linearly dependent set, then each vector is a linear combination of the other vectors in S.
- 3. If x and y are linearly independent, and $\{x, y, z\}$ is linearly dependent, then z is in Span $\{x, y\}$.
- 4. If A and B are invertible $n\times n$ invertible matrices, then AB is invertible and $(AB)^{-1}=A^{-1}B^{-1}$

Problem 8

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a linearly dependent set in \mathbb{R}^3 . Explain why $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ must be linearly dependent as well.

Problem 9

For each of the following, determine if W is a subspace of V :

- 1. $V = \mathbb{R}^2$, and W is the line in \mathbb{R}^2 given by the equation y = 2x.
- 2. $V = \mathbb{R}^2$, and W is the circle in \mathbb{R}^2 given by the equation $x^2 + y^2 = 1$.
- 3. $V = \mathbb{R}^2$, and W is the set in \mathbb{R}^2 given by the equation $x^2 + y^2 = 0$.
- 4. V is the space of 3×3 matrices, and W is the subset of invertible 3×3 matrices.
- 5. V is the space of polynomials, and W is the set of polynomials of degree equal to 3.
- 6. V is the space of polynomials, and W is the set of polynomials of degree less or equal to 3.

Problem 10

Find a matrix A such that Range(A) = $\left\{ \begin{bmatrix} a-b\\b\\3a+b \end{bmatrix}, a, b \in \mathbb{R} \right\}$.

Problem 11

Let $T: V \to W$ be a linear transformation. Show that Range(T) is a subspace of W.

Problem 12

Let $M_{2\times 2}$ be the space of 2×2 matrices. Define $T: M_{2\times 2} \to M_{2\times 2}$ by $T(A) = A - A^T$.

- 1. Show that T is linear.
- 2. Determine the kernel and range of T.