Problem 1-6 Points
Fix bases

$$
B=\left\{1, x, x^{2}\right\}, C=\left\{1+x^{3}, 2 x+3 x^{2}, 2+5 x^{2}+x^{3}, x^{2}\right\}
$$

for $\mathbb{P}_{2}(\mathbb{R})$ and $\mathbb{P}_{3}(\mathbb{R})$, respectively. Let T be the linear transformation

$$
T: \mathbb{P}_{2}(\mathbb{R}) \rightarrow \mathbb{P}_{3}(\mathbb{R})
$$

with associated matrix

$$
A_{B, C}=\left[\begin{array}{ccc}
3 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & -1 \\
2 & 0 & 0
\end{array}\right]
$$

Calculate the polynomial $T\left(3-2 x+2 x^{2}\right)$. You must give your answer as a polynomial.

$$
\begin{aligned}
&t f]_{B}=\left[3-2 x+20^{2}\right]_{g}=\left(\begin{array}{c}
3 \\
-2 \\
2
\end{array}\right) \\
& A_{b c}[f]_{g}=\left(\begin{array}{ccc}
3 & 0 & 1 \\
1 & 1 \\
0 & -1 \\
2 & -1
\end{array}\right)\left(\begin{array}{c}
3 \\
-2 \\
2
\end{array}\right)=\left(\begin{array}{c}
11 \\
1 \\
-4 \\
6
\end{array}\right)=[T(f)]_{C} \\
& \Rightarrow T(f)=11\left(1+x^{3}\right)+\left(2 x+3 x^{2}\right)-4\left(2+5 x^{2}+x^{3}\right)+6\left(x^{2}\right) \\
&=7 x^{3}-11 x^{2}+2 x+3
\end{aligned}
$$

Problem 2-4 Points
Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+2 x_{3} \\
-x_{1}+x_{2} \\
2 x_{2}+5 x_{3}
\end{array}\right]
$$

1. Write the standard matrix of the transformation.
2. Calculate the determinant of the standard matrix. Is the matrix invertible?

$$
\begin{aligned}
\underline{A} & =\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 2 \\
2 & 0 & 5
\end{array}\right) \\
\operatorname{det}(\underline{A}) & =\left|\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 2 \\
2 & 0 & 5
\end{array}\right|=\left|\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 2 \\
0 & 2 & 5
\end{array}\right|=\left|\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right| \\
& =1 . \text { So invertible. }
\end{aligned}
$$

