\qquad

Problem 1-6 Points

Fix bases

$$
B=\left\{1, x, x^{2}\right\}, C=\left\{1+x^{3}, 2 x+3 x^{2}, 2+5 x^{2}+x^{3}, x^{2}\right\}
$$

for $\mathbb{P}_{2}(\mathbb{R})$ and $\mathbb{P}_{3}(\mathbb{R})$, respectively. Let T be the linear transformation

$$
T: \mathbb{P}_{2}(\mathbb{R}) \rightarrow \mathbb{P}_{3}(\mathbb{R})
$$

with associated matrix

$$
A_{B, C}=\left[\begin{array}{ccc}
3 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & -1 \\
2 & 0 & 0
\end{array}\right]
$$

Calculate the polynomial $T\left(3-2 x+2 x^{2}\right)$. You must give your answer as a polynomial.

Problem 2-4 Points

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+2 x_{3} \\
-x_{1}+x_{2} \\
2 x_{2}+5 x_{3}
\end{array}\right]
$$

1. Write the standard matrix of the transformation.
2. Calculate the determinant of the standard matrix. Is the matrix invertible?
