Name:

Problem 1 - 2 Points

Consider the space $V = \mathbb{P}_2$, the polynomials with real coefficients of degree at most 2. Show whether the following subsets of V are subspaces of V.

- 1. $V_1 = \{a_0 + a_1x + a_2x^2, a_0, a_1, a_2 \text{ all odd}\}$
- 2. $V_2 = \{a_0 + a_1x + a_2x^2, a_0, a_1, a_2 \text{ all even}\}$

Problem 2 - 6 Points

True/False. Explain your answers.

1. If $B = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n}$ is a basis for \mathbb{R}^n then the set ${\mathbf{v}_1, ..., \mathbf{v}_n, \mathbf{u}}$ must be linearly dependent for any vector \mathbf{u} .

2. If the columns of an $n \times n$ matrix A form a basis for \mathbb{R}^n then A is invertible and the columns of A^{-1} also form a basis for \mathbb{R}^n .

3. If $B = \{f_1, ..., f_{n+1}\}$ is a basis for \mathbb{P}_n , the space of polynomials of degree at most n, then their derivatives $\{f'_1, ..., f'_{n+1}\}$ also forms a basis of \mathbb{P}_n .

Problem 3 - 2 Points

Do one of the following:

- 1. Find the prime factors of 2149711.
- 2. Name a song you currently can't stop listening to.
- 3. Draw something interesting.