\qquad
Date: 27/9/2022
Math 54: Fall 2022

Problem 1-2 Points

Consider the space $V=\mathbb{P}_{2}$, the polynomials with real coefficients of degree at most 2 . Show whether the following subsets of V are subspaces of V.

1. $V_{1}=\left\{a_{0}+a_{1} x+a_{2} x^{2}, a_{0}, a_{1}, a_{2}\right.$ all odd $\}$
2. $V_{2}=\left\{a_{0}+a_{1} x+a_{2} x^{2}, a_{0}, a_{1}, a_{2}\right.$ all even $\}$

Problem 2-6 Points

True/False. Explain your answers.

1. If $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for \mathbb{R}^{n} then the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}, \mathbf{u}\right\}$ must be linearly dependent for any vector \mathbf{u}.
2. If the columns of an $n \times n$ matrix A form a basis for \mathbb{R}^{n} then A is invertible and the columns of A^{-1} also form a basis for \mathbb{R}^{n}.
3. If $B=\left\{f_{1}, \ldots, f_{n+1}\right\}$ is a basis for \mathbb{P}_{n}, the space of polynomials of degree at most n, then their derivatives $\left\{f_{1}^{\prime}, \ldots, f_{n+1}^{\prime}\right\}$ also forms a basis of \mathbb{P}_{n}.

Problem 3-2 Points

Do one of the following:

1. Find the prime factors of 2149711.
2. Name a song you currently can't stop listening to.
3. Draw something interesting.
