Problem 1-2 Points
Compute $A B$ and $B A$ for the following matrices. If the product is not defined explain why not.

$$
\left.\begin{array}{c}
A=\left[\begin{array}{cc}
2 & 4 \\
1 & -1 \\
-2 & 1
\end{array}\right], B=\left[\begin{array}{cc}
2 & 1 \\
3 & -2
\end{array}\right] \\
3 \times 2
\end{array}\right]=\left(\begin{array}{cc}
2 & 4 \\
1 & -1 \\
-2 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & 1 \\
3 & -2
\end{array}\right)=\left(\begin{array}{cc}
16 & -6 \\
-1 & 3 \\
-1 & -4
\end{array}\right)
$$

$B A$ not defied an \# cato $B \neq \#$ rom in A
$\uparrow \uparrow$
$2 \times 3+2$

Problem 2-4 Points
Consider the following transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1} \\
x_{2}-x_{3}
\end{array}\right]
$$

Show whether this transformation is linear or not. If it is, find the standard matrix A of the transformation T .

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right]\right)=\binom{x_{1}+y_{1}}{x_{2}+y_{2}-x_{3}-y_{3}}=\binom{x_{1}}{x_{2}-x_{3}}+\binom{y_{1}}{y_{2}-y_{3}} \\
& =T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)+T\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right) \\
& T\left(c\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
c x_{1} \\
c x_{2} \\
c x_{3}
\end{array}\right]\right)=\binom{c x_{1}}{c x_{2}-c x_{3}}=c\binom{x_{1}}{x_{2}-x_{2}}=c T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)
\end{aligned}
$$

So T is her.

$$
\begin{aligned}
T\left(e_{1}\right) & =\binom{1}{0}, T\left(e_{2}\right)=\binom{0}{1}, T\left(e_{3}\right)=\binom{0}{-1} \\
& \Rightarrow \underline{A}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Problem 3-4 Points
Suppose a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

1. Write the standard matrix A of the transformation T. Find A^{-1}.
2. Compute $A^{-1}\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right]$. What do you get?

$$
\begin{aligned}
& \text { 1) } A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 0 & \vdots \\
1 & 0
\end{array}\right), f \underline{A}^{-1}, \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right) \\
& n\left(\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & A_{A-1} \\
0 & 1 & -1
\end{array}\right)
\end{aligned}
$$

2) $A_{2}^{-1}\left(\begin{array}{l}1 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 8\end{array}\right)$ ar appectad
