Problem 1-7 Points
Determine if $\left[\begin{array}{c}3 \\ -5 \\ 8\end{array}\right]$ is in the span of $\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$. If so write it as a linear combination of the two vectors.

$$
x_{1}\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)+x_{2}\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)=\left(\begin{array}{c}
3 \\
-5 \\
8
\end{array}\right) \longleftarrow\left(\begin{array}{cc}
1 & 2 \\
3 & -1 \\
-2 & 3
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}
3 \\
-5 \\
8
\end{array}\right)
$$

$$
\longrightarrow\left(\begin{array}{cc|c}
1 & 2 & 3 \\
3 & -1 & -5 \\
-2 & 3 & 8
\end{array}\right) \sim\left(\begin{array}{cc|c}
1 & 2 & 3 \\
0 & -7 & -14 \\
0 & 7 & 14
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\sim\left(\begin{array}{cc|c}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right) \quad \Rightarrow \quad-1\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)+2\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)=\left(\begin{array}{c}
3 \\
-5 \\
8
\end{array}\right)
$$

Problem 2-7 Points
Let the following vectors be given

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
3 \\
4 \\
-1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-4 \\
h \\
3
\end{array}\right]
$$

Find all values of h such that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ do not span \mathbb{R}^{3}.

$$
\left(\begin{array}{ccc}
2 & 3 & -4 \\
0 & 4 & -4 \\
1 & -1 & h
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -1 & 3 \\
0 & 4 & 4 \\
2 & 3 & -4
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -1 & 3 \\
0 & 4 & h \\
0 & 5 & -10
\end{array}\right)
$$

$$
\sim\left(\begin{array}{ccc}
1 & -1 & 3 \\
0 & 1 & -2 \\
0 & 4 & h
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -1 & 3 \\
0 & 1 & -2 \\
0 & 0 & h+8
\end{array}\right) \quad \text { for no pint, this }
$$

$$
\begin{gathered}
\Rightarrow h=-8 \text {, then does nat } \\
\operatorname{span} \mathbb{R}^{3}
\end{gathered}
$$

Problem 3-6 Points
Determine whether the following statements are True/False. If True explain why, if False provide a counterexample.

1. A homogeneous system is always consistent.

$$
\text { True, } A O=O \text { along. }
$$

2. If S is a linearly dependent set of vectors, then each vector in S is a linear combination of the other vectors in S .

$$
\text { False. }\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\},\binom{0}{i} \operatorname{matapon}\left\{\binom{(0) / 2}{0}\right\} \text {. }
$$

3. Columns of a 3×2 matrix can never span \mathbb{R}^{3}.

True. At ural 2 prats so nophat inevreyrow.

