Problem 1-2 Points
Write the following linear system as an augmented matrix

$$
\begin{aligned}
& x_{1}+x_{2}+3 x_{3}=3 \\
& 2 x_{1}+2 x_{2}-x_{3}=-1 \\
& x_{1}+3 x_{2}+5 x_{3}=-5 \\
&\left(\begin{array}{ccc|c}
1 & 1 & 3 & 3 \\
2 & 2 & -1 & -1 \\
1 & 3 & 5 & -5
\end{array}\right)
\end{aligned}
$$

Problem 2-4 Points
Row reduce the above augmented matrix to solve for the system. (Make sure to plug in the numbers at the end to make sure they work!)

$$
\begin{aligned}
& \sim\left(\begin{array}{ccc|c}
1 & 1 & 3 & 3 \\
0 & 0 & -1 & -7 \\
0 & 2 & 2 & -8
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & 3 & 3 \\
0 & 1 & 1 & -4 \\
0 & 0 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & 3 & 3 \\
0 & 1 & 0 & -5 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& n\left(\begin{array}{ccc|c}
1 & 0 & 3 & 8 \\
0 & 1 & 0 & -5 \\
0 & 0 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & -5 \\
0 & 0 & 1 & 1
\end{array}\right) \\
& x_{1}=5 \\
& x_{2}=-5 \\
& x_{z}=1
\end{aligned}
$$

Consider the following augmented matrix

$$
\left[\begin{array}{llll}
1 & 2 & 4 & 3 \\
0 & a & 1 & 6 \\
0 & b & 2 & 4
\end{array}\right]
$$

Suppose that this augmented system is consistent. What can you say about a, b ?

$$
\sim\left(\begin{array}{ccc|c}
1 & 2 & 4 & 3 \\
0 & a & 1 & 6 \\
0 & 0 & 2-\frac{b}{a} & 4-\frac{6 b}{a}
\end{array}\right) \quad \text {, assuring } a \neq 0
$$

\rightarrow if $\frac{6 b}{a}=4$, so $6 b=4 a$, then consident as nopivat in laol column
\rightarrow Othense, $2-\frac{b}{a} \neq 0$, so $2 a \neq b$

$$
\begin{aligned}
& \text { If } a=0, \sim\left(\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
0 & b & 2 & 4 \\
0 & 0 & 1 & 6
\end{array}\right), \begin{array}{l}
\text { if } b \neq 0 \text {, then } \\
\text { consblent. } \\
\text { If } b=0,
\end{array}\left(\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
0 & 0 & 2 & 4 \\
0 & 0 & 1 & 6
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 2 & 4 & 3 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 4
\end{array}\right) \text {, } \\
& \text { inconsblent. }
\end{aligned}
$$

\Rightarrow Ca $\neq b$ then system consblent.

