Name: \_\_\_\_\_

## Problem 1a

|                                       | $\lceil 2 \rceil$   |                | ( | $\lceil 1 \rceil$                 |   | $\lceil 2 \rceil$   |   | $\lceil 3 \rceil$ | ١ |    |
|---------------------------------------|---------------------|----------------|---|-----------------------------------|---|---------------------|---|-------------------|---|----|
| Determine all values of $k$ such that | 3                   | is in the span | ł | 2                                 | , | 1                   | , | 3                 |   | ۶. |
|                                       | $\lfloor k \rfloor$ |                | C | $\begin{bmatrix} 0 \end{bmatrix}$ |   | $\lfloor 3 \rfloor$ |   | 3                 | J |    |



## Problem 2

Let  $T: \mathbb{R}^3 \to \mathbb{R}^4$  be a linear transformation such that

$$T\left( \begin{bmatrix} 1\\-3\\0 \end{bmatrix} \right) = \begin{bmatrix} -2\\3\\-4\\0 \end{bmatrix}, \ T\left( \begin{bmatrix} 0\\3\\0 \end{bmatrix} \right) = \begin{bmatrix} 3\\-3\\6\\0 \end{bmatrix}, T\left( \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right) = \begin{bmatrix} 1\\3\\2\\0 \end{bmatrix} \right\}$$

- 1. Write the standard matrix A of the transformation T.
- **2.** Is  $A\mathbf{x} = \mathbf{b}$  consistent for any  $\mathbf{b} \in \mathbb{R}^4$ ?
- 3. Find a basis for the column and null space of this transformation.
- 4. Verify the rank nullity theorem for this transformation.

## Problem 3

For each of the following determine whether the statements are true or false. If true explain why. If false explain why not with a counterexample or otherwise.

1. Let A be invertible. Then  $A^T$  is invertible.

2. Let AB be invertible. Then both A and B are invertible.

3. There exists a linear transformation  $T : \mathbb{R}^3 \to \mathbb{R}^2$  such that  $T\left( \begin{bmatrix} -1\\1\\-1 \end{bmatrix} \right) = \begin{bmatrix} 1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right) = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix} 2\\-1\\0 \end{bmatrix}, T\left( \begin{bmatrix}$ 

4. Let  $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$  be a basis of  $\mathbb{R}^3$  and  $T : \mathbb{R}^3 \to \mathbb{R}^3$  be some linear transformation. Then  $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$  is a basis of  $\mathbb{R}^3$ .