\qquad
Date: 15/9/2022
Math 54: Fall 2022

Problem 1a

Determine all values of k such that $\left[\begin{array}{l}2 \\ 3 \\ k\end{array}\right]$ is in the span $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]\right\}$.

Problem 1b
Is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]\right\}$ a basis for \mathbb{R}^{3} ?

Problem 2

Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be a linear transformation such that

$$
\left.T\left(\left[\begin{array}{c}
1 \\
-3 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-2 \\
3 \\
-4 \\
0
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
3 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
3 \\
-3 \\
6 \\
0
\end{array}\right], T\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
3 \\
2 \\
0
\end{array}\right]\right\}
$$

1. Write the standard matrix A of the transformation T.
2. Is $A \mathbf{x}=\mathbf{b}$ consistent for any $\mathbf{b} \in \mathbb{R}^{4}$?
3. Find a basis for the column and null space of this transformation.
4. Verify the rank nullity theorem for this transformation.

Problem 3

For each of the following determine whether the statements are true or false. If true explain why. If false explain why not with a counterexample or otherwise.

1. Let A be invertible. Then A^{T} is invertible.
2. Let $A B$ be invertible. Then both A and B are invertible.
3. There exists a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $T\left(\left[\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right]\right)=\left[\begin{array}{c}1 \\ 0\end{array}\right], T\left(\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]\right)=$ $\left[\begin{array}{c}-1 \\ 1\end{array}\right], T\left(\left[\begin{array}{c}0 \\ -1 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 2\end{array}\right]$.
4. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a basis of \mathbb{R}^{3} and $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be some linear transformation. Then $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is a basis of \mathbb{R}^{3}.
