Recall Bass \rightarrow Lirealy independent
of $V \rightarrow$ Spary V

What i V in opeveral? Vector Space!
V non-umplyset uf addrion and scabermiteply defined such that

1) $\underline{u}+\underline{v} \in V$
2) $\underline{u}+\underline{v}=\underline{v}+\underline{u}$

Sulspace $77 c(\underline{u}+\underline{v})=c \underline{u}+c \underline{v}$
3) $(\underline{u}+\underline{v})+\underline{w}=\underline{y}+(\underline{v}+\underline{w})$
4) $\underline{0} \in V$ Condeitas
s) \quad Forvev, $-\underline{v} \in V$ st $\underline{v}-\underline{v}=0 \quad(0) \quad \mid \underline{u}=\underline{u}$
ey. \mathbb{R}^{n}, which ne hove been ustry thrs whole lime
cg. Polgnonials of degnee at $\operatorname{mol} n$, eg. $n=2, \mathbb{P}_{2}$

$$
a_{0}+a_{1} x+a_{2} x^{2} \quad, \quad a_{0}, a_{1}, a_{2} \in \mathbb{R}
$$

cancheck condilions one satoffed

Def Coordinate Syolens
eg. \mathbb{R}^{2}

$$
\underline{v}=\binom{2}{1} \in \mathbb{R}^{2}
$$

Landward Bart

$$
\begin{aligned}
& \varepsilon=\left\{\underline{e}_{1}, e_{2}\right\} \\
& {[\underline{v}]_{\varepsilon}=\binom{2}{1}}
\end{aligned}
$$

New buss

$$
\begin{aligned}
& B=\left\{e_{1},\binom{1}{1}\right\} \\
& {[\underline{v}]_{B}=\binom{1}{1}}
\end{aligned}
$$

Wy? Imaghe

- Who is right?
-Both! Different perspective
- there 2 will descant the vector using different bases b/c they have different perspectives

How lo find new coordinates ingevenont?

- Row reduce!

$$
\frac{e g}{0} \quad V=1 P_{2}, \quad B_{1}=\left\{1, x, x^{2}\right\}, \quad B_{2}=\left\{x, 1+x, x^{2}-1\right\}
$$

$$
x=1+2 x+x^{2} \in V_{1}
$$

$$
[x]_{B_{1}}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \quad \text {, For }[x]_{B_{2}}
$$

$$
\alpha_{1} x+\alpha_{2}(1+x)+\alpha_{3}\left(x^{2}-1\right)=1+2 x+x^{2}
$$

$$
1: \quad \alpha_{2}-\alpha_{3}=1
$$

$$
\begin{aligned}
& 1: \alpha_{2}-\alpha_{3}=1 \\
& x: \alpha_{1}+\alpha_{2}=2
\end{aligned} \Leftrightarrow\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

$$
x^{2}: \quad \alpha_{3}=1
$$

$$
\longrightarrow\left(\begin{array}{ccc|c}
0 & 1 & -1 & 1 \\
1 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & 0 & 2 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 1 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

$$
\sim\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{array}\right) \Longrightarrow \begin{aligned}
& \alpha_{1}=0 \\
& \alpha_{2}=2 \\
& \alpha_{3}=1
\end{aligned} \quad 1[x]_{B_{2}}=\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)
$$

Theorem There is a linear tranofornation fran $x \rightarrow[x]_{B}$ given som bars B of V where $x \in V$.
\rightarrow This traoforvation is an isomorphism.
Prof In bock. Wot that interring.
More infercseng: How do ce wite the matovik?
Let bars be $B=\left\{\underline{b}_{1}, \underline{b_{2}}, \ldots, \underline{b}_{n}\right\}$, then $\underline{x}=c_{1} \underline{b}_{1}+\ldots+c_{n} \underline{b}_{n}$

- change of coordinate matin pan $B \rightarrow E$

Chare of Baris

- How to gofor $[\underline{x}]_{s} \rightarrow[\underline{x}]_{c}$ ingeneral?

IDEA:

$$
\begin{aligned}
\underline{P}_{C}\left[\underline{x}_{C}\right] & =\underline{P}_{B}[\underline{x}]_{B} \\
{\left[\underline{x}_{C}\right] } & =\underline{\underline{P}}_{C}^{-1} \underline{P}_{B}[\underline{x}]_{B}
\end{aligned}
$$

chenge of baos matnox $\underset{C}{P}$
Ingeneral:

$$
\begin{aligned}
\underline{P}_{c}^{-1} \underline{\underline{P}}_{B} & =\underline{\underline{p}}_{c}^{-1}\left[\begin{array}{lll}
\underline{b}_{1} & \ldots & b_{n}
\end{array}\right] \\
& =\left[\begin{array}{lll}
{\left[\underline{b}_{1}\right]_{c}} & \cdots & \left.\left[b_{n}\right]_{c}\right]=\underset{c=s}{p}
\end{array}\right.
\end{aligned}
$$

\log.

$$
v=\binom{2}{1}
$$

$$
B_{1}=\left\{\binom{1}{0},\binom{1}{1}\right\}
$$

$[\underline{b}]_{B_{1}}=\binom{1}{1}$

$$
B_{2}=\left\{\binom{1}{1},\binom{-1}{1}\right\}
$$

$$
[\underline{v}]_{B_{2}}=\binom{\frac{3}{2}}{-\frac{1}{2}}
$$

$$
\begin{aligned}
& \operatorname{eg} \quad \uparrow \quad=2 \cdot\binom{1}{0}+1 \cdot\binom{0}{1} \quad=1\binom{1}{0}+1 \cdot\binom{1}{1} \\
& \text { Leandoud Bars } \\
& \varepsilon=\left\{e_{1}, e_{2}\right\} \\
& {[\underline{v}]_{\varepsilon}=\binom{2}{1}} \\
& \underline{P}_{B}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)_{1} \\
& B=\left\{e_{1},\binom{1}{1}\right\} \\
& {[\underline{v}]_{B}=\binom{1}{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{P}{B}_{B}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad{\underset{=}{B_{2}}}^{P}=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \\
& \underset{B_{2}}{\stackrel{P}{P}=B_{B_{1}}}=\underline{P}_{B_{2}}^{-1} \stackrel{P}{=B_{1}}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & 1 \\
-\frac{1}{2} & 0
\end{array}\right) \\
& \stackrel{P}{\stackrel{P}{=}}[\underline{v}]_{B_{1}}=\left(\begin{array}{cc}
\frac{1}{2} & 1 \\
-\frac{1}{2} & 0
\end{array}\right)\binom{1}{1}=\binom{\frac{3}{2}}{-\frac{1}{2}}
\end{aligned}
$$

Calalate diruthy ${R_{2}}_{\mathscr{E}}^{=} B_{1} 1$

$$
\begin{array}{r}
\left(\begin{array}{l}
\left.\left[\begin{array}{l}
1 \\
0
\end{array}\right)\right]_{B_{2}}
\end{array} \underset{\substack{1 \\
1 \\
1}}{\left[\left(\begin{array}{l}
1 \\
B_{2}
\end{array}\right]\right.}=\left(\begin{array}{cc}
\frac{1}{2} & 1 \\
-\frac{1}{2} & 0
\end{array}\right)\right. \\
\left(\begin{array}{cc|c}
1 & -1 & 1 \\
1 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 0 & \frac{1}{2} \\
0 & 1 & -\frac{1}{2}
\end{array}\right)
\end{array}
$$

