Recap
Iq. $\begin{aligned} & x_{1}+x_{2}=1 \\ & x_{1}-x_{2}=-1\end{aligned} \quad \begin{gathered}\text { Matrix } \\ \text {-vector } \\ \text { Form }\end{gathered}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1}{-1}$

- equivabut nays of wring

Defurion Linear Independence
A set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent if the only solution to

$$
\alpha_{1} \underline{v}_{1}+\alpha_{2} \underline{v}_{2}+\ldots+\alpha_{n} \underline{v}_{n}=0
$$

is the trivial solution $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{n}=0$.
If the vectors are not linearly independent, thy are linearly dependent.
$\frac{\lg }{\mathrm{g}}\left\{\binom{1}{0},\binom{0}{1}\right\}$ is lineorby independent.
$\left\{\binom{1}{0},\binom{2}{0}\right\}$ is linearly dependent.

Theorem A set of vectors is linearly dependent if and only if one of the vectors in the set can be written as a linear combination of the others.

Prof Let $\underline{v}_{k}=\alpha_{1} \underline{v}_{1}+\ldots+\alpha_{n-1} \underline{v}_{k-1}+\alpha_{k+1} \underline{v}_{k+1}+\ldots+\alpha_{n} \underline{v}_{n}$

$$
\Rightarrow 0=\alpha_{1} v_{1}+\ldots+\alpha_{k-1} v_{k-1}+1 \cdot v_{k}+\alpha_{k+1} v_{k+1}+\cdots+\alpha_{n} v_{n}
$$

$\prod_{\text {no -zens coefficient }}$
\longrightarrow Sets linearly dependent
\rightarrow The converse is milan.
eg.

$$
\begin{aligned}
& \left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
3 \\
5 \\
2
\end{array}\right)\right\} \text {, check if linemby dependent. } \\
& \left(\begin{array}{l}
3 \\
5 \\
2
\end{array}\right)=\alpha_{1}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\alpha_{2}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \longleftrightarrow\left(\begin{array}{ll|l}
1 & 0 & 3 \\
1 & 1 & 5 \\
0 & 1 & 2
\end{array}\right)
\end{aligned}
$$

$n\left(\begin{array}{ll|l}1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 1 & 2\end{array}\right) \backsim\left(\begin{array}{ll|l}1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right)$, sysfech condolent, io
$\left(\begin{array}{l}3 \\ 5 \\ 2\end{array}\right)$ in span $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$. So the are linearly dependent.

Therefore: to cheek whether a set of veclos are lineally independent $\left\{\underline{v}_{1}, v_{2}, \ldots, \underline{v}_{n}\right\}$, vol need locheck if the matrix $\left(\begin{array}{llll}\underline{v}_{1} & v_{2} & \ldots & \underline{v}_{n}\end{array}\right)$ has pivot in every column.
eg. $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\} \rightarrow\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \begin{gathered}\text { clearlypiort in } \\ \text { each colum }\end{gathered}$
\longrightarrow linearly independent.
eg. $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\right\} \rightarrow\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 0\end{array}\right)$ (nopiatlaol
\longrightarrow linearly dependent.
eg. $\left\{\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right),\left(\begin{array}{l}4 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}5 \\ 5 \\ 2\end{array}\right)\right\} \infty\left(\begin{array}{llll}1 & 1 & 4 & 5 \\ 2 & 3 & 1 & 5 \\ 1 & 1 & 2 & 2\end{array}\right)$
cleanly, there cannot be plat in evenycolum, as more colum than sous.
linearly dependent.

Why does this matter?
We know that linear independence means $\left(\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right)$ has n pirat columns.

That means $\left(\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right)\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)=\underline{b}_{1}$ always has uigne solution for ANY b if $\left\{v_{1}, \underline{v}_{2}, \ldots, v_{n}\right\}$ are linearly independent!.

