Lase time

$$
\begin{aligned}
& x+2 y=2 \\
& x-y=-1
\end{aligned} \longleftrightarrow\left(\begin{array}{rr|r}
1 & 2 & 5 \\
1 & -1 & -1
\end{array}\right)
$$

We reunote linears syslens of equations ans "anquented" watrip

Thd lime Wrile like tho:

$$
\begin{aligned}
& \text { Wrile like tho: } \\
& x\binom{1}{1}+y\binom{2}{-1}=\binom{5}{-1} \quad \begin{array}{l}
\text { "Veclor " } \\
\text { Equation }
\end{array}
\end{aligned}
$$

There are sectors

- How loundertland the veclors? Geomelrically it helpfut:

Now reduce lose linear system:

$$
\left(\begin{array}{cc|c}
1 & 2 & 5 \\
1 & -1 & -1
\end{array}\right) \underset{R_{2}-R_{1}}{\sim}\left(\begin{array}{cc|c}
1 & 2 & 5 \\
0 & -3
\end{array}\right)_{R_{21}-3} \sim\left(\begin{array}{cc|c}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right)
$$ then $R_{1}-2 R_{2}$

ADP
THEmup =

$$
=\binom{5}{-1}
$$

\Rightarrow Can rephrase linear system $x+2 y=5$

$$
x-y=-1
$$

as how much of $\binom{1}{1},\binom{2}{-1}$ make $\binom{5}{-1}$

Veclor operations (evary thity ic crigourativie)

$$
\underset{\underbrace{}}{\text { Scalor }} c \cdot\binom{1}{2}=\binom{c}{2 c}
$$

C some number

$\left.\underset{\substack{\text { Vector } \\ \text { Addtion }}}{\operatorname{Vin}} 1 \begin{array}{l}1 \\ 1\end{array}\right)+\binom{1}{0}=\binom{2}{1}$

Definition A linears conbination of reccorsis the sum of scalor muttiples of veclors

$$
y=\alpha_{1} \underline{x}_{1}+\alpha_{2} \underline{x}_{2}+\cdots \cdots
$$

where $\alpha_{1}, \alpha_{2}, \ldots$ are numbers,
$\underline{x}_{1}, x_{2}, \ldots$ are vechors of the samesice
eg. 1. $\binom{1}{1}+2\binom{2}{-1} \quad \begin{gathered}\text { is a lineer conbhation of } \\ \text { veclors }\end{gathered}$
eng. $2 \cdot\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+4\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+\sigma \cdot\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \begin{aligned} & \text { is anolhr } \\ & \text { valide } \\ & \text { in. eale. }\end{aligned}$
eg $\left(\begin{array}{l}4 \\ 2 \\ 1\end{array}\right)+\binom{0}{1}$

- Only reclors of same siecear be odded

Definition The span of a set of veclos $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is the set of veclors that can be written as a linear combination $\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}$ forsome sealers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.
eng $\binom{5}{1}$ is in the span of $\left\{\binom{1}{1},\binom{2}{-1}\right\}$.
$\log .\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ is in the span of $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$.
$\log \left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ is NOT in the span of $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$.

How to find if a vector is in the agon of asst of vector?
eg. Is $\left(\begin{array}{l}5 \\ 2 \\ 1\end{array}\right)$ in span $\left\{\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)\right\}$?
\rightarrow This nears is then α_{1}, α_{2} such thant

$$
\alpha_{1}\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)+\alpha_{2}\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{c}
5 \\
2 \\
-4
\end{array}\right) ?
$$

\longrightarrow This is a linear syobem!
\rightarrow Row reduce!

$$
\begin{gathered}
\left(\begin{array}{ccc|c}
1 & 0 & 5 \\
2 & 2 & 2 \\
0 & 1 & -4
\end{array}\right) \sim\left(\begin{array}{cc|c}
1 & 0 & 5 \\
0 & 2 & -8 \\
0 & 1 & -4
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 0 & 5 \\
0 & 1 & -4 \\
0 & 0 & 0
\end{array}\right) \\
\Rightarrow \alpha_{1}=5, \alpha_{2}=-4 . \text { Check: } \\
5\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)-4\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{c}
5 \\
10-8 \\
-4
\end{array}\right)=\left(\begin{array}{c}
5 \\
2 \\
-4
\end{array}\right), \text { so yes! }
\end{gathered}
$$

eng io $\left(\begin{array}{l}4 \\ 0 \\ 1\end{array}\right)$ in spon $\left\{\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)\right\}$.
\Longrightarrow Enoll α_{1}, α_{2} suht that

$$
\begin{aligned}
& \alpha_{1}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)+\alpha_{2}\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{l}
4 \\
0 \\
1
\end{array}\right) ? \\
& \sim\left(\begin{array}{ll|l}
0 & 1 & 4 \\
1 & 2 & 0 \\
1 & 0 & 1 \\
1
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 0 & 1 \\
1 & 2 & 0 \\
0 & 1 & 4
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 2 & -1 \\
0 & 1 & 4
\end{array}\right) \\
& \sim\left(\begin{array}{cc|c}
1 & 0 & 1 \\
0 & 1 & -\frac{1}{2} \\
0 & 1 & 4
\end{array}\right) \sim\left(\begin{array}{cc|c}
1 & 0 & 1 \\
0 & 1 & \frac{-1}{2} \\
0 & 0 & \frac{9}{2}
\end{array}\right) \sim\left(\begin{array}{ccc|}
1 & 0 & 1 \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

\rightarrow Syolem in consiblent.
So it is not in thespan.

ANOTHER WAY TO WRTTB THE SYSTEM:

$$
\begin{array}{r}
x+2 y=5 \\
2 x+y=3
\end{array} \longleftrightarrow\left(\begin{array}{ll|l}
1 & 2 & 5 \\
2 & 1 & 3
\end{array}\right)
$$

Equations
Angmented Matix

$$
\longleftrightarrow x\binom{1}{2}+y\binom{2}{1}=\binom{5}{3} \longleftrightarrow\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{y}{y}=\binom{5}{3}
$$

Vector Equation
Matrix-Veceon Murliplization

Martrix - Vector Form

Mabrix-
veclor
muttiplication

$$
\begin{aligned}
\left(\begin{array}{cc}
1 & 2 \\
2 & 1
\end{array}\right)\binom{x}{y} & =\binom{5}{3} \\
1^{\text {se row }} x \text { column } & =\text { enting in iot row } \\
\left(\begin{array}{cc}
1 & 2 \\
2 & 1
\end{array}\right)\binom{x}{y} & =\binom{5}{3}
\end{aligned}
$$

$2^{\text {nd }}$ now x colemn $=$ entryin $2^{\text {not }}$ colermn

Merenix-Veotar Muleplisation
"A bil weind anelil gou get used bo il"

Marhive

$$
\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad \begin{aligned}
& 3 \text {-ars } \\
& 1 \text { clum }
\end{aligned} \begin{aligned}
& 3 \times 1 \text { mative } 1 \\
& 3 \text { 3evtay vecto }
\end{aligned}
$$

Bentry vector
(vectors are jure I column motivics)
eg.

$$
\begin{array}{ccc}
\left(\begin{array}{lll}
2 & 3 & 4 \\
2 & 1 & 2
\end{array}\right) & \left(\begin{array}{l}
1 \\
2 \\
2 \times 3
\end{array}\right)
\end{array}
$$

NOT DEFINED, there 2 mut be thesame

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \xrightarrow{2 \text { rous }} \begin{array}{l}
3 \text { chams }
\end{array} \rightarrow 2 \times 3 \text { marhix } \\
& \left(\begin{array}{ll}
1 & 0 \\
4 & 0 \\
3 & 1 \\
5 & 0
\end{array}\right) \quad \begin{array}{l}
4 \text { rovs } \\
2 \text { chuns }
\end{array} \Rightarrow 4 \times 2 \text { matire }
\end{aligned}
$$

ey.

$$
\begin{aligned}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)=\left(\begin{array}{l}
1 \times 2+0 \times 3+0 \times 4 \\
0 \times 2+1 \times 3+0 \times 4 \\
0 \times 2+0 \times 3+1 \times 4
\end{array}\right)
$$ idectily morbix as it does

nothing bo the veclor

