Welcome to Math 54! (Sections 215 | 218)

GSI: Lewis Pan
Email: yllpan@berkeley.edu

Office Hours: M 10-11, W 12-13, Evans 1070

HW is due on gradescope on **Tuesday 8pm**

- If not enrolled on gradescope, send me an email
- Please don’t email HW to me
- 1st HW due 30th August
- NO LATE SUBMISSIONS

Quizzes will be on Thursdays

- Quizzes 15 mins
- Lowest 2 scores dropped
- YOU CANNOT TAKE QUIZ FROM ANOTHER GSI
- NO MAKE-UP QUIZZES
- ALL QUIZZES IN PERSON
Linear Systems of Equations

EQUATION

\[2x + 3y = 4 \]
\[4x + y = -2 \]

MATHEMATIC REPRESENTATION

<table>
<thead>
<tr>
<th>left hand side</th>
<th>right hand side</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\begin{pmatrix} 2 & 3 \ 4 & 1 \end{pmatrix}]</td>
<td>[\begin{pmatrix} 4 \ -2 \end{pmatrix}]</td>
</tr>
</tbody>
</table>

Example:

- Multiply top row \(\times 2 \)
 \[4x + 6y = 8 \]

- Subtract 1st eq. from 2nd
 \[5y = 10 \]
 \[y = 2 \]

- Divide 2nd row \(\div 5 \)
 \[4x + y = -2 \]

- Subtract 1st row from 2nd
 \[4x = -4 \]
 \[x = -1 \]
- Every linear equation can be written using a matrix representation
- Can perform the usual row operations on the matrix
- Linear Algebra is just the study of these equations and their matrices
Row operations

1) Swap rows

2) Multiply row by a scalar

3) Add a multiple of one row from another

These are called elementary row operations

The goal is to solve the linear equation using these operations
Def. Echelon Form

\[
\begin{pmatrix}
1 & 2 & 4 \\
0 & 2 & 1 \\
0 & 0 & 0 \\
\end{pmatrix}
\]

- Zero rows at bottom
- Leading non-zero entries in each row go from left to right
- Leading non-zero entries in each row are called pivots

Reduced Row Echelon Form

\[
\begin{pmatrix}
1 & 0 & 5 \\
0 & 1 & 10 \\
0 & 0 & 0 \\
\end{pmatrix}
\]

Echelon Form plus:

- Pivots are 1
- Anything above and below pivots are zero

GOAL: Use elementary row operations to reduce matrix to reduced row echelon form
STRATEGY

(Row 1 = \(R_1 \))

\[
\begin{align*}
\text{pivot} & \quad \begin{pmatrix} 1 & 2 & 1 & -1 \end{pmatrix} \\
\text{eliminate} & \quad \begin{pmatrix} 2 & 2 & 5 & 1 \end{pmatrix} \\
\text{eliminate} & \quad \begin{pmatrix} 3 & 5 & -2 & 5 \end{pmatrix}
\end{align*}
\]

STEP 1: Put into echelon form

- Find pivots and eliminate under pivot

\[
\begin{pmatrix} 1 & 2 & 1 & -1 \\
0 & -2 & 3 & 3 \\
0 & 0 & -1 & -8
\end{pmatrix}
\]

This is in echelon form.

STEP 2: Go from echelon to reduced row echelon.

- Make pivots 1

- Make entries above pivots 0
\[
\begin{pmatrix}
1 & 2 & 1 & -1 \\
0 & -2 & 3 & 3 \\
R_3 \div \frac{-3}{2} \rightarrow 0 & 0 & 1 & -1
\end{pmatrix}
\]

\[
R_1 - R_3 \rightarrow \begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & -2 & 0 & 6 \\
0 & 0 & 1 & -1
\end{pmatrix}
\]

\[
R_2 - 3R_3 \rightarrow \begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & -2 & 0 & 6 \\
0 & 0 & 1 & -1
\end{pmatrix}
\]

\[
R_2 \times \frac{-1}{2} \rightarrow \begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & -1
\end{pmatrix}
\]
This is now in reduced row echelon form!