1. Your real exam is 3 hours long. Sit this practice under the same conditions for the best practice.
2. I do not know what your actual exam looks like. The questions here are based on what I can gather from looking at previous midterms offered by Prof. Haiman + other professors.
3. The actual exam is closed book, no calculators. So for the best practice I would recommend doing that too for this.
4. You are allowed two single sided cheat sheets I believe for the exam - feel free to use it for this if you'd like.
5. Show your work. Don't just write down the answer. Answers with little justification will usually not get you many points.

Problem 1 (10 Points)

1. Sketch the graph $f(x)=2 x^{2}-x^{3}-x$
2. Sketch the graph $f(2 x)+1$. Describe the series of transformations from the first to the second.
1) $2 x^{2}-x^{3}-x=-x(x-1)^{2}$

2)

a) Stretch houizutaily tutor $\frac{1}{2}$
b) Shift up 1

Problem 2 (10 Points)
Consider the function

$$
f(x)=\left\{\begin{array}{l}
\arctan (x)+\frac{\pi}{2}, x<0 \\
A e^{x}+B x+C, x \geq 0
\end{array}\right.
$$

Find A, B, C such that the function is twice differentiable everywhere.
Cuntinuriy: $\lim _{x \rightarrow 10^{-}} \arctan (x)+\frac{\pi}{2}=\lim _{x \rightarrow 0^{+}} A e^{x}+B_{x}+C$

$$
\Rightarrow \quad \frac{\pi}{2}=A+C
$$

I $^{\text {se Perdathe, }} \lim _{x \rightarrow 0^{-}} \frac{1}{1+x^{2}}=\lim _{x \rightarrow 0^{+}} A e^{x}+B$
Conthuifly

$$
\Rightarrow \quad 1=A+B
$$

$2^{\text {nor }}$ Dennathe: $\lim _{x \rightarrow 0^{-}} \frac{-2 x}{\left(1+x^{2}\right)^{2}}=\lim _{x \rightarrow 20^{+}} A e^{x}$
Continuing

$$
\begin{array}{ll}
\Rightarrow & 0=A \\
\Rightarrow & B=1 \\
\Rightarrow & C=\frac{\pi}{2}
\end{array}
$$

Problem 3 (20 Points)
Find the following limits:

1. $\lim _{x \rightarrow 1} \frac{x^{2}+x+1}{x-1}$
2. $\lim _{x \rightarrow \pi / 4} \frac{\cos ^{2}(x)-\sin ^{2}(x)}{e^{x}-1}$
3. $\lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x$
4. $\lim _{x \rightarrow-\infty} \sqrt{x^{2}+x}-x$
1) $\lim _{x \rightarrow 1+} \frac{x^{2}+x+1}{x-1}$

$$
\lim _{x \rightarrow 1-} \frac{x^{2}+x+1}{x-1}
$$

Denamhator is posilve $\rightarrow 0$ Denounthater is regortre $\rightarrow 0$
Nunevator is porrline \rightarrow ?
Niveraten $\rightarrow 3$

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 1+\frac{x^{2}+x+1}{x-1}=\infty} \quad \Longrightarrow \lim _{x \rightarrow 1} \frac{x^{2}+x+1}{x-1}=\infty \\
& \quad \lim _{x \rightarrow 1} \frac{x^{2}+x+1}{x-1} \text { Does natexad }
\end{aligned}
$$

$2)$

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos ^{2}(x)-\sin ^{2}(x)}{e^{x}-1} \quad \begin{array}{l}
\operatorname{top}
\end{array} \rightarrow 0 \\
& \text { bot } \rightarrow e^{\frac{1}{4}}-1 \neq 0 \\
& \neq \infty
\end{aligned}
$$

3)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x \rightarrow \infty \rightarrow \infty, \infty \\
& =\lim _{x \rightarrow \infty} \frac{x^{2}+x-x^{2}}{\sqrt{\sqrt{x^{2}-x}+x}=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}-x}+x}} \\
& =\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{2}-x}+x} \cdot \frac{1}{x} \cdot \frac{1}{x}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1-\frac{1}{x}}+1} \\
& =\frac{1}{2}
\end{aligned}
$$

4) $\lim _{x \rightarrow-\infty} \sqrt{x^{2}+x}-x \rightarrow \sqrt{\infty-\infty}+\infty$ indeternulate

$$
\begin{aligned}
& =\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}-x}+x}, \text { fromabove } \\
& =\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}-x}+x} \cdot \frac{1}{x}==-\sqrt{\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow-\infty} \frac{1}{-\sqrt{1-\frac{1}{x^{2}}}+1}=\infty
\end{aligned}
$$

Problem 4 (10 Points)

1. Differentiate the function $f(x)=e^{e^{x}}$
2. Find the $\mathrm{max} / \mathrm{min}$ of the function $e^{-x^{2}}$ on the interval $[-1,1]$.
1)

$$
\begin{aligned}
e^{e^{x}}= & f_{1}\left(f_{2}(x)\right) \\
& f_{1}(x)=e^{x}, f_{2}(x)=e^{x} \\
\Rightarrow & \frac{d}{d x} f_{1}\left(f_{2}(x)\right)=f_{1}\left(f_{2}(x)\right) \cdot f_{2}^{\prime}(x) \\
= & e^{e^{x}} \cdot e^{x}
\end{aligned}
$$

2) $f(x)=e^{-x^{2}}, \quad f^{\prime}(x)=-2 x e^{-x^{2}}$ $f(x)$ isevery where differentiable.
Cnrizal pes: $f^{\prime}(x)=-2 x e^{-x^{2}}=0$

$$
\Rightarrow x=0
$$

For map/unh, check cureical pes tendpolits:

$$
\begin{array}{ll}
x=-1, & f(x)=\frac{1}{e}, g(\text { bal } \min \\
x=0 & f(x)=1, g \text { goal max } \\
x=1, & f(x)=\frac{1}{e}, g \text { goal min }
\end{array}
$$

Problem 5 (20 Points)

1. For some $r>0$, find the definite integral $\int_{-r}^{r} \sqrt{r^{2}-x^{2}}+x^{3} d x$ in terms of r by interpreting it as an area.
2. Find the area bound by the curves $x=\frac{\pi}{4}, y=\tan x, y=0$.
1) $\int_{-r}^{n} \sqrt{r^{2}-x^{2}}+x^{3} d x=\int_{-r}^{n} \sqrt{r^{2}-x^{2}} d x+\int_{-r}^{r} x^{3} d x$

$$
\int_{-r}^{r} \sqrt{r^{2}-x^{2}} d x, \quad y=\overline{r^{2}-x^{2}}, y^{2}=r^{2}-x^{2}=
$$

$\Rightarrow x^{2}+y^{2}=r^{2}$, thesis acing ufrodius r

\Rightarrow hotegnal is $\frac{\pi r^{2}}{2}$
2) Sketch:

So aver is $\int_{0}^{\frac{11}{4}} \tan (x) d x$

$$
\begin{aligned}
& y=\int_{0}^{\frac{\pi}{4}} \frac{\sin (x)}{\cos (x)} d x \\
&=-\ln |\cos x|_{0}^{\frac{\pi}{2}} \\
&=-\ln \left|\cos \frac{\pi}{4}\right|+\ln |\cos 0| \\
&=-\ln \left|\frac{1}{\sqrt{2}}\right|=\frac{\ln 2}{2} .
\end{aligned}
$$

Problem 6 (10 Points)
Using Newton's method approximate the value of $5^{\frac{1}{3}}$. Use a starting guess of $x_{0}=1$. Will it still work if $x_{0}=0$ instead?

Solve $f(x)=x^{3}-5$, as $f\left(5^{\frac{1}{3}}\right)=0$.
Nenton: $x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$

$$
\begin{aligned}
& f(1 x)=3 x^{2} \\
& \Rightarrow x_{1}=1-\frac{1-5}{3 \cdot 1}=1-\frac{-4}{3}=\frac{7}{3}
\end{aligned}
$$

If $y_{0}=0$, il doesn 4 work as $f^{\prime}(0)=0$.

Problem 7 (20 Points)

1. Evaluate the integral $\int_{0}^{2} e^{x} d x$.
2. Using Riemann sums with two blocks ($n=2$), find two numbers B, C such that $B \leq$ $\int_{0}^{2} e^{x} d x \leq C$.
3. Find the volume of the solid formed by rotating the area bound by the curves $y=x^{2}, y=2 x$ about the line $x=2$.

$$
\text { 1) } \int_{0}^{2} e^{x} d x=\left.e^{x}\right|_{0} ^{2}=e^{2}-1
$$

left Kiunam-Sum underestimates night Riemann- Sum overestimates

$$
\begin{aligned}
\Rightarrow & \text { left: } e^{0}+e^{1} \\
& \text { night: } e^{1}+e^{2} \\
\Rightarrow & 1+e \leq \int_{0}^{2} e^{x} d x \leq e+e^{2}
\end{aligned}
$$

3) $y=x^{2}, y=2 x$, volute abait $x=2$.

Sucen:

$$
\begin{gathered}
y=x^{2}, y=2 x \text { inearection: } \\
x^{2}=2 x \\
x^{2}-2 x=0, x(x-2)=0, \\
x=0, x=2 .
\end{gathered}
$$

\Rightarrow Ineurecetion pouts:

$$
(0,0),(2,4)
$$

Using waoker muthod:

$$
\begin{aligned}
& y=x^{2} \Longrightarrow x=\sqrt{y}, y=2 x \rightarrow x=\frac{y}{2} \\
\Rightarrow & V=\int_{0}^{4} \pi\left(2-\frac{y}{2}\right)^{2}-\pi(2-\sqrt{y})^{2} d y
\end{aligned}
$$

Using cylhanival shells:

$$
V=\int_{0}^{2} 2 \pi(2-x)\left(2 x-x^{2}\right) d x
$$

Bothgive $V=\frac{16}{6} \pi$

