Problem 1

1. Compute the limit $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}$.
2. Compute the limit $\lim _{x \rightarrow \infty} x-\ln (x)$. (Try to find a way to use part 1)
1) $\frac{\ln (x)}{x} \longrightarrow \frac{\infty}{\infty}$, indeterminate

$$
\text { L'hôppral: }=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=0
$$

2) $\lim _{x \rightarrow \infty} x-\ln (x)=\lim _{x \rightarrow \infty} x\left(1-\frac{\ln (x)}{x}\right)$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(1-\frac{\ln (x)}{x}\right)=1 \text { from moat } 1 \\
& \Rightarrow \lim _{x \rightarrow \infty} x\left(1-\frac{\ln (x)}{x}\right)=\infty . \\
& \underset{\rightarrow \infty}{\downarrow} \xrightarrow{\downarrow} 1
\end{aligned}
$$

Problem 2
Consider the function $f(x)=x^{4}+x^{2}-x$.

1. Show that the function has a critical point.
2. Show that the critical point of the function is unique.
3. Starting with $x_{0}=\frac{1}{2}$, apply Newton's method to generate a better guess x_{1} for the critical point of the function.
1) $f^{\prime}(x)=4 x^{3}+2 x-1$, this is continuous

$$
\begin{aligned}
& f^{\prime}(-10)=-4000-20-1<0 \\
& f^{\prime}(10)=4000+20-1>0
\end{aligned}
$$

\Rightarrow For $f^{\prime}(x)=0$, a solution exids
2) $f^{\prime \prime}(x)=12 x^{2}+2, \Rightarrow f^{\prime}(y)$ is differentiable

By Rolle's theorem, as $f^{\prime}(x)$ is differentiable, if $f^{\prime}(x)$
(orMVT)
ha, more than one root, $f^{\prime \prime}(x)=0$ somewhere.
But $f^{\prime \prime}(x)=12 x^{2}+2 \geqslant 2$, so $f^{\prime \prime}(x) \pm 0$ implies unique critical point.
3) $x_{1}=x_{0}-\frac{f^{\prime}\left(x_{0}\right)}{f^{\prime \prime}\left(x_{0}\right)}, x_{0}=\frac{1}{2}$, NOTE: we are soling $f^{\prime}(x)=0$.

$$
\Longrightarrow \quad x_{1}=\frac{1}{2}-\frac{\frac{4}{8}+1-1}{12 \cdot \frac{1}{4}+2}=\frac{1}{2}-\frac{1 / 2}{3+2}=\frac{1}{2}-\frac{1}{5}=\frac{4}{10}=\frac{2}{5}
$$

