Problem 1

1. Compute the limit \(\lim_{x \to \infty} \frac{\ln(x)}{x} \).

2. Compute the limit \(\lim_{x \to \infty} x - \ln(x) \). (Try to find a way to use part 1)

\[
1) \quad \frac{\ln(x)}{x} \quad \xrightarrow{x \to \infty} \quad \frac{\infty}{\infty}, \quad \text{indeterminate}
\]

\[
\text{L'Hopital:} \quad \lim_{x \to \infty} \frac{1}{x} = 0
\]

\[
2) \quad \lim_{x \to \infty} x - \ln(x) = \lim_{x \to \infty} x \left(1 - \frac{\ln(x)}{x}\right)
\]

\[
\lim_{x \to \infty} \left(1 - \frac{\ln(x)}{x}\right) = 1 \quad \text{from part 1}
\]

\[
\Rightarrow \lim_{x \to \infty} x \left(1 - \frac{\ln(x)}{x}\right) = \infty.
\]

\[
\downarrow \quad \downarrow \quad \downarrow 1
\]
Problem 2

Consider the function \(f(x) = x^4 + x^2 - x \).

1. Show that the function has a critical point.
2. Show that the critical point of the function is unique.
3. Starting with \(x_0 = \frac{1}{2} \), apply Newton’s method to generate a better guess \(x_1 \) for the critical point of the function.

1) \(f'(x) = 4x^3 + 2x - 1 \); this is continuous
 \[f'(-10) = -4000 - 20 - 1 < 0 \]
 \[f'(10) = 4000 + 20 - 1 > 0 \]
 \(\Rightarrow \) For \(f'(x) = 0 \), a solution exists

2) \(f''(x) = 12x^2 + 2 \); \(\Rightarrow f'(x) \) is differentiable
 By Rolle’s theorem, as \(f'(x) \) is differentiable, if \(f'(c) \)
 is differentiable on \(MVT \)
 has more than one root, \(f''(x) = 0 \) somewhere.
 But \(f''(x) = 12x^2 + 2 \geq 2 \), so \(f''(x) \neq 0 \)
 implies unique critical point.

3) \(x_1 = x_0 - \frac{f'(x_0)}{f''(x_0)} \) \(x_0 = \frac{1}{2} \) \(\text{Note:} \) we are solving \(f'(x) = 0 \).
 \(\Rightarrow \) \(x_1 = \frac{1}{2} - \frac{\frac{1}{8} + 1 - 1}{12 \cdot \frac{1}{4} + 2} = \frac{1}{2} - \frac{\frac{12}{8 + 2}}{12 \cdot \frac{1}{4} + 2} = \frac{1}{2} - \frac{1}{5} = \frac{4}{10} = \frac{2}{5} \).