Problem 1

- 1. Compute the limit $\lim_{x\to\infty} \frac{\ln(x)}{x}$.
- 2. Compute the limit $\lim_{x\to\infty}x-\ln(x)$. (Try to find a way to use part 1)

1)
$$\frac{\ln 60}{x} \xrightarrow{x \to \infty} \frac{\infty}{\infty}$$
, indeformilierte
 $C'h^{2}polal: = \lim_{x \to \infty} \frac{1}{x} = 0$

$$z) \lim_{x \to \infty} x - \ln(x) = \lim_{x \to \infty} x \left(l - \frac{\ln(x)}{x} \right)$$

$$\lim_{x \to \infty} \left(1 - \frac{\ln(x)}{x} \right) = l \quad \text{from point } l$$

$$\Longrightarrow \lim_{x \to \infty} x \left(\left(- \frac{\ln(x)}{x} \right) \right) = \infty.$$

$$\lim_{x \to \infty} \frac{1}{x} = \frac{1}{x}$$

Problem 2

3

Consider the function $f(x) = x^4 + x^2 - x$.

- 1. Show that the function has a critical point.
- 2. Show that the critical point of the function is unique.
- 3. Starting with $x_0 = \frac{1}{2}$, apply Newton's method to generate a better guess x_1 for the critical point of the function.

1)
$$f'(x) = 4x^3 + 2x - 1$$
, this is continuous
 $f'(-10) = -4000 - 20 - 1 < 0$
 $f'(10) = 4000 + 20 - 1 > 0$
 \Rightarrow For $f'(x) = 0$, a solution exists
2) $f''(x) = 12x^2 + 2$, $\Rightarrow f'(x)$ is differentiate
By Rolle's theorem, as $f'(x)$ is differentiate
 $f''(x) = 12x^2 + 2 = 3f'(x)$ is differentiate
By Rolle's theorem, as $f'(x) = 0$ somewhere.
But $f''(x) = 12x^2 + 2 > 2$, so $f''(x) \neq 0$
implies angle critical point.
3) $x_1 = x_0 - \frac{f'(x_0)}{f''(x_0)}$, $x_0 = \frac{1}{2} - \frac{10}{3+2} = \frac{1}{2} - \frac{1}{5} = \frac{4}{10} = \frac{2}{5}$.