\qquad

Problem 1

1. Rewrite a^{x} such that the base is in terms of e. (i.e. write it as $e^{f(x)}$ for some function f).
2. Differentiate this expression to show that the derivative of a^{x} is $\ln a \cdot a^{x}$.
1)

$$
\log (a x)=x \log (a) \text {, so } a^{x}=e^{\log \left(a^{x}\right)}=e^{x \log (a)}
$$

2)

$$
\frac{d}{d x} a^{x}=\frac{d}{d x} e^{x \log (a)}=\log (a) e^{x \log (a)}
$$

$$
=\underline{a^{x} \cdot \log (a)}
$$

Problem 2

1. Fill in the blank $\tan \left(\tan ^{-1}(x)\right)=$.
2. Find the derivative of $\tan ^{-1}(x)$.
3. Using the chain rule, find the derivative of $\tan ^{-1}\left(x e^{x}\right)$.
1) $\tan \left(\tan ^{-1}(x)\right)=x$
2) Differentiating noting chain rule

$$
\begin{gathered}
\Rightarrow \sec ^{2}\left(\tan ^{-1}(x)\right) \cdot \frac{d}{d x} \tan ^{-1}(x)=1 \\
\frac{d}{d x} \tan ^{-1}(x)=\cos ^{2}\left(\tan ^{-1}(x)\right)
\end{gathered}
$$

$$
\rightarrow \tan \theta=x
$$

$$
x
$$

$$
\cos (\theta)=\cos \left(\tan ^{-1}(x)\right)=\frac{1}{\sqrt{1+x^{2}}}
$$

$$
\Rightarrow \cos ^{2}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}
$$

$$
\Longrightarrow \frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}
$$

3) Cham rule: $\frac{d}{d x} \tan ^{-1}\left(x e^{x}\right)=\frac{1}{1+\left(x e^{x}\right)^{2}} \cdot\left(e^{x}+x e^{x}\right)$

$$
=\frac{e^{x}(1+x)}{1+x^{2} e^{2 x}}
$$

