Worksheet # 9 Date: 01/11/2021 Math 1A: Fall 2021 Name: Solutions

Problem 1

Consider the function $f(x) = \sqrt{x} - \ln x$, defined on the interval $(0, \infty)$.

- 1. On what interval(s) is f(x) increasing? Decreasing?
- 2. On what interval(s) is f(x) concave up? Concave down?
- 3. Find all local and global minima and maxima of f(x).

Problem 2

Is $\sqrt{x} > \ln x$ for all x > 0?

Problem 3

Let $g(x) = \sin^3(x)$ on the interval $(-\pi, \pi)$.

- 1. On what interval(s) is f(x) increasing? Decreasing? What are its critical numbers?
- 2. Determine whether each critical point is a local minimum, a local maximum, or neither.
- 3. Sketch a graph of f(x).

Problem 4

- 1. Find two positive numbers whose product is 100 and whose sum is a minimum.
- 2. A poster is to have an area of 180 in^2 with 1-inch margins at the bottom and sides and a 2-inch margin at the top. What dimensions will give the largest printed area?

(i)
$$f(x) = \sqrt{1}x - \ln(x)$$
 , $x > 0$

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}} - \frac{1}{x}$$

Con horizonthy, $f'(x) > 0 \Rightarrow \frac{1}{2}x^{-\frac{1}{2}} - \frac{1}{x} > 0$

$$\Rightarrow \frac{1}{2}\sqrt{x} > 1$$

To $f'(x) > 0$

$$\Rightarrow x \in (4, \omega)$$

$$f'(x) = 0$$

$$f'(x) < 0$$

$$f'(x) < 0$$

$$f'(x) = -\frac{1}{4}x^{-\frac{3}{2}}$$

$$f''(x) < 0$$

$$f''(x) = -\frac{1}{4}x^{-\frac{3}{2}}$$

$$f''(x) = -\frac{1}$$

Evelposits: Im fry)= 00

his fry)= 00

No been may

Mo gwont may

2) If Jx 7 ln(x) Grx70, then Jx - ln(x) >0 fx x>0 => Could at global who of to-ln(x). We already found above that glober mm. was x=4 where f(4)=2(1-h(2)). h(z) < h(e) = 1 on h(x) is an ihomorphy f_n . => f(4) 70. so To 7 hex), 20. 3) $g(x) = \sin^3(x)$, $x \in (-\pi, \pi)$ 9(x)= 3 sin 2(x) cos (x) g'(x) = 0 $\Rightarrow sin(x) = 0$ or cos(x) = 0 $x = -\pi_1 0_1 \pi$ $x = \pm \frac{\pi}{2}$ 9'(-즉)co 9'(즉)70 9'(즉)70 9'(즉)co Sign of - 전 0 전 T

there one the only zeroes of y'(x). This inbetreen there zeroes, g'(x) is either otherly so on LO by condmuity.

= Check one point in each internal. So demanding $(-T, -\overline{z})$ and (\overline{z}, T) .

thoroughy (=\frac{1}{2},0) and (0,\frac{1}{2}).

Let
$$f'(x)$$
 to Complete, $1-\frac{100}{x^2}=0$ $x^2=000$
 $x=(0)$ wont a portre.

Total Anen:
$$(80=hL)$$

Max. this is a use $(h-3)\cdot(2-2)$

A(h) = $(h-3)\cdot(\frac{10}{h}-2)$

Max. A(h) = $A'(h)=0$

$$A(h) = (h-3) \left(\frac{10}{h}-2\right)$$

Mas. A(h) => A'(h)=0

$$A'(h) = -2 + \frac{540}{h^2} = 0$$
, $h^2 = 270$
 $h = \sqrt{270} = \sqrt{9}\sqrt{30}$

$$= 2 = \frac{180}{h} = \frac{180}{3\sqrt{50}} = \frac{60}{\sqrt{50}}$$