Problem 1

Consider the function $f(x)=\sqrt{x}-\ln x$, defined on the interval $(0, \infty)$.

1. On what interval(s) is $f(x)$ increasing? Decreasing?
2. On what interval(s) is $f(x)$ concave up? Concave down?
3. Find all local and global minima and maxima of $f(x)$.

Problem 2

Is $\sqrt{x}>\ln x$ for all $x>0$?

Problem 3

Let $g(x)=\sin ^{3}(x)$ on the interval $(-\pi, \pi)$.

1. On what interval(s) is $f(x)$ increasing? Decreasing? What are its critical numbers?
2. Determine whether each critical point is a local minimum, a local maximum, or neither.
3. Sketch a graph of $f(x)$.

Problem 4

1. Find two positive numbers whose product is 100 and whose sum is a minimum.
2. A poster is to have an area of $180 \mathrm{in}^{2}$ with 1 -inch margins at the bottom and sides and a 2 -inch margin at the top. What dimensions will give the largest printed area?
$1.1)$

$$
\begin{aligned}
& f(x)=\sqrt{x}-\ln (x) \quad, x>0 \\
& f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}-\frac{1}{x} \quad 1
\end{aligned}
$$

forinereasing, $f^{\prime}(x)>0 \Rightarrow \frac{1}{2} x^{-\frac{1}{2}}-\frac{1}{x}>0$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \sqrt{x}>1, \sqrt{x}>2, x>4 . \\
& \text { Sos } f^{\prime}(x)>0 \text { for } x \in(4, \infty) \\
& f^{\prime}(x)=0 \text { for } x=4 \\
& f^{\prime}(x)<0 \text { fo } x+(0,4)
\end{aligned}
$$

1.2) $f^{\prime \prime}(x)=-\frac{1}{4} x^{-\frac{3}{2}}+\frac{1}{x^{2}}$

Concenve up: $f^{\prime \prime}(x)>0, \quad-\frac{1}{4} x^{-\frac{3}{2}}+\frac{1}{x^{2}}>0$

$$
\Rightarrow 1>\frac{1}{4} \sqrt{x}, \quad 16>x
$$

\Rightarrow Concare up: $x \in(0,16)$, Cancaue doun : $x \in(16, \infty)$
1.3) Cureral pls: $x=4$ for part 1.1. $f^{\prime \prime}(4)>0$ for pout 1.2 \Rightarrow Local mM

$$
\begin{aligned}
f(4) & =2-\ln (4) \\
& =2(1-\ln (2))
\end{aligned}
$$

Fovalponts:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x)=\infty \\
\lim _{x \rightarrow \infty} f(y)=\infty
\end{aligned} \Rightarrow \begin{aligned}
& \text { Cubbal min at } x=4 \text {, (and local) } \\
& \\
& \text { Nolocal max } \\
& \\
& \\
& \text { No glabal max }
\end{aligned}
$$

2) If $\sqrt{x}>\ln (x)$ frx>0, then $\sqrt{x}-\ln (x)>0$ fo $x>0$
\Rightarrow loah at global wh. of $\bar{\infty}-\ln (x)$.
We alveaely found above that globeal min. was $x=4$ where $f(4)=2(1-\ln (2))$
$\ln (2)<\ln (e)=1$ as $\ln (x)$ is an ilianaong for.

$$
\Rightarrow f(4)>0 . \text { so } \sqrt{x}>\ln (x), x>0
$$

3)

$$
\begin{gathered}
g(x)=\sin ^{3}(x), \quad x \in(-\pi, \pi) \\
g^{\prime}(x)=3 \sin ^{2}(x) \cos (x) \\
g^{\prime}(x)=0 \quad \Rightarrow \sin (x)=0 \quad \text { or } \cos (x)=0 \\
x=-\pi, 0, \pi \quad x= \pm \frac{\pi}{2}
\end{gathered}
$$

a)

there one the only zevoes of og'(x). Thus inbetreen there zeves, $g^{\prime}(x)$ is erther starety >0 or <0 by condinuity.
\Rightarrow Check one point n earh inkural.
So deevasing $\left(-\pi,-\frac{\pi}{2}\right)$ and $\left(\frac{\pi}{2}, \pi\right)$. ihanarly $\left(-\frac{\pi}{2}, 0\right)$ and $\left(0, \frac{\pi}{2}\right)$.
b)

- Jurl chech rigus eithen orde of onttarel pont of $g^{\prime}(x)$.
$c)$

4.1) Let x be are uubter. Then $\frac{100}{x}$ is the othen.

Wout tocurinise sum $1^{\text {so }}$ walinite $x+\frac{100}{x}$

$$
f(x)=x+\frac{100}{x}, \quad f^{\prime}(x)=1-\frac{100}{x^{2}}
$$

Set $f(x)=0$ lo winimite, $\quad 1-\frac{100}{x^{2}}=0 \quad x^{2}=100$ $x=10$, want x porthe.
\Rightarrow the nurbers one 10,10 .
$4.2)$

Cotal anea is 180.
Tutal Anea: $180=h 2$
Useable aven: $(h-3) \cdot(L-2)$

$$
A(n)=(h-3)\left(\frac{180}{n}-2\right)
$$

Max. $A(h) \Rightarrow A^{\prime}(h)=0$

$$
\begin{array}{rlrl}
A(h) & =180-2 h-\frac{540}{h}+6 \\
& \left.A^{\prime}(h)=-2+\frac{540}{h^{2}}=0, \quad \begin{array}{l}
h^{2}
\end{array}\right)=270 \\
& & =\sqrt{220}=\sqrt{9} \sqrt{30} \\
& =3 \sqrt{30} \\
\Rightarrow L=\frac{100}{h}=\frac{180}{3 \sqrt{30}}=\frac{60}{\sqrt{30}} & &
\end{array}
$$

