\qquad

Problem 1

Find the following infinite limits

1. $\lim _{x \rightarrow 5^{+}} \frac{x+1}{x-5}$
2. $\lim _{x \rightarrow \pi^{-}} \cot (x)$

Problem 2

Given $\lim _{x \rightarrow 2} f(x)=4, \lim _{x \rightarrow 2} g(x)=-2, \lim _{x \rightarrow 2} h(x)=0$
Find the following limits if they exist. If not, explain why.

1. $\lim _{x \rightarrow 2} f(x)+5 g(x)$
2. $\lim _{x \rightarrow 2} \sqrt{f(x)}$
3. $\lim _{x \rightarrow 2} \frac{g(x)}{h(x)}$

Problem 3

Evaluate the following limits:

1. $\lim _{t \rightarrow-2} \frac{t^{4}-2}{2 t^{2}-3 t+2}$
2. $\lim _{x \rightarrow 4} \frac{x^{2}+3 x}{x^{2}-x-12}$

Problem 4

Show that $f(x)$ is continuous for all real numbers for the following:

1. $f(x)=\left\{\begin{array}{l}1-x^{2}, x \leq 1 \\ \log (x) x>1\end{array}\right.$
2. $f(x)=\left\{\begin{array}{l}\sin (x), x<\frac{\pi}{4} \\ \cos (x) x \geq \frac{\pi}{4}\end{array}\right.$

Problem 5

Use the intermediate value theorem to show that the equation $e^{x}=3-2 x$ has a solution in the interval $(0,1)$.

Problem 6

Find values for a, b such that the following function is continuous

$$
f(x)=\left\{\begin{array}{l}
\frac{x^{2}-4}{x-2}, x<2 \tag{1}\\
a x^{2}-b x+3,2 \leq x<3 \\
2 x-a-b, x \geq 3
\end{array}\right.
$$

