Name: ____

Problem 1

Find the following infinite limits

- 1. $\lim_{x \to 5^+} \frac{x+1}{x-5}$
- 2. $\lim_{x\to\pi^-} \cot(x)$

Problem 2

Given $\lim_{x\to 2} f(x) = 4$, $\lim_{x\to 2} g(x) = -2$, $\lim_{x\to 2} h(x) = 0$ Find the following limits if they exist. If not, explain why.

- 1. $\lim_{x \to 2} f(x) + 5g(x)$
- 2. $\lim_{x\to 2} \sqrt{f(x)}$
- 3. $\lim_{x\to 2} \frac{g(x)}{h(x)}$

Problem 3

Evaluate the following limits:

1. $\lim_{t \to -2} \frac{t^4 - 2}{2t^2 - 3t + 2}$ 2. $\lim_{x \to 4} \frac{x^2 + 3x}{x^2 - x - 12}$

Problem 4

Show that f(x) is continuous for all real numbers for the following:

1.
$$f(x) = \begin{cases} 1 - x^2, \ x \le 1\\ \log(x) \ x > 1 \end{cases}$$

2. $f(x) = \begin{cases} \sin(x), \ x < \frac{\pi}{4}\\ \cos(x) \ x \ge \frac{\pi}{4} \end{cases}$

Problem 5

Use the intermediate value theorem to show that the equation $e^x = 3 - 2x$ has a solution in the interval (0, 1).

Problem 6

Find values for a, b such that the following function is continuous

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, \ x < 2\\ ax^2 - bx + 3, \ 2 \le x < 3\\ 2x - a - b, \ x \ge 3 \end{cases}$$
(1)