Problem 1
Classify each function as a power function, root function, polynomial (state its degree), rational function, algebraic function, trigonometric function, exponential function, or logarithmic function.

1. $f(x)=\log _{2} x$

$$
\log
$$

2. $g(x)=\sqrt[4]{x}$ root
3. $h(x)=\frac{2 x^{3}}{1-x^{2}}$
rational
4. $u(t)=1-1.1 t+2.54 t^{2} \quad$ polynowal dey. 2
5. $v(t)=5^{t}$
6. $w(\theta)=\sin \theta \cos ^{2} \theta$
exponential
trigonometric

Problem 2
Find the domain of the function.

1. $f(x)=\frac{\cos (x)}{1-\sin (x)}$. $1 \neq \sin x, \quad x \neq \frac{\pi}{2}+2 \pi n, n=$ any integer
2. $g(x)=\frac{1}{1-\tan (x)}$. $1 \neq \tan x$, $x \neq \frac{\pi}{4}+\pi n, n=a n y$ integer

Problem 3
Many physical quantities are connected by inverse square laws, that is, by power functions of the form $f(x)=k x^{-2}$. In particular, the illumination of an object by a light source is inversely proportional to the square of the distance from the source. Suppose that after dark you are in a room with just one lamp and you are trying to read a book. The light is too dim and so you move halfway to the lamp. How much brighter is the light?

$$
\begin{aligned}
& \text { Thy two vales of } x, f(1)=k, f(2)=\frac{k}{4} \\
& \quad-4 \text { times as bright. } \\
& \text { Ingereval } \frac{4 k}{x^{2}}=\frac{k}{(x \mid 1)^{2}}
\end{aligned}
$$

Problem 4

1. Find an equation for a family of linear functions with slope 2 and sketch several members of the family.
2. Find an equation for the family of linear functions such that $f(2)=1$ and sketch several members of the family.
3. Which function belongs to both families?

Problem 5
Find an expression for a cubic function f if $f(1)=6$ and $f(-1)=f(0)=f(2)=0$.
4.1) $y=2 x+c, c$ any number
4.2) $y=m(x-2)+1$, maynumber

4.3) $y=2 x-3$

5)

$$
\begin{aligned}
& f(-1)=f(0)=f(2)=0, \text { so ne murthome } \\
& f(x)=c(x+1)(x)(x-2) \quad \text {, foursome } C \\
& \text { Also } \quad \begin{array}{c}
=f(1)=c(1+1)(1)(1-2) \\
\Rightarrow C=-3 \\
\Rightarrow f(x)=-3 x(x+1)(x-2)
\end{array}
\end{aligned}
$$

