\qquad

Problem 1
State the domain and range of each of the following functions and whether they are even/odd/neither:

1. $f(x)=x \quad$ Odd , Domain: \mathbb{R}, Range: \mathbb{R}
2. $f(x)=x^{2} \quad$ Even, Domain: R, Range: $[0, \infty)$
3. $f(x)=\sin (x)$ Odd, Doman: \mathbb{R}, Range: $[-1,1]$
4. $f(x)=\frac{x^{4}+x^{2}-3}{x^{2}-1}$ Even , Domain: $x \neq-1,1$, Ravage: \mathbb{R}
5. $f(x)=\frac{x+1}{x^{2}-1}=\frac{1}{x-1}$, Neither 1 Nomen: $x \neq 1$, Range: \mathbb{R}

Problem 2
Sketch $f(x)=x^{2}$. Is it even or odd? Does this function have an inverse? Even, yes if define
Problem 3

$$
f^{-1}(x)=\sqrt{x} \text { OR } f^{-1}(x)=-\sqrt{x} \text { But wot } f^{-1}(x)= \pm \sqrt{x} \text {. }
$$

Sketch each of the following, making sure to label where it crosses the x / y axes and say whether it is increasing/decreasing, odd/even, none of the above.

1. $f(x)=\frac{1}{x}$
2. $f(x)=\tan (x)$
3. (Hard) $f(x)=\sin \left(\frac{1}{x}\right)$

Problem 4

Odd, neither

od, neither increasing l

The composition of two functions $f(x), g(x)$ is a function $h=f \circ g$ defined as $h(x)=f(g(x))$.

1. Is it the case that $f \circ g=g \circ f$?
2. If f, g are odd, is $f \circ g$ odd?
3. If f, g are even, is $f \circ g$ even?
1) No. Consider $f(x)=x^{2}, g(x)=\sin (x)$.

$$
\begin{aligned}
& \text { 2) } f(g(-x))=f(-g(x))=-f(g(x)) \text {. Yes. } \\
& \text { 3) } f(g(-x))=f(g(x)) \text {. Yes. }
\end{aligned}
$$

