For full credit, please clearly show all your work.

Problem 1

Consider the ODE y(t)' = -4y(t), with initial condition y(0) = 3.

- 1. What is the analytical solution to this ODE?
- 2. Recall Euler's method y(t+h) = y(t) + hy(t). Apply one step of Euler's method to approximate the solution of y(t) at t = 0.25.

Problem 2

Consider the Butcher table:

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
\hline
\frac{2}{3} & \frac{2}{3} & 0 \\
\hline
& \frac{1}{4} & \frac{3}{4}
\end{array}$$

- 1. Write out the corresponding RK method. Is the method explicit or implicit? Why?
- 2. Apply one step of this RK method to approximate y(t) at t = 0.25, where y'(t) = -4y(t), y(0) = 3. (Same ODE from the first question)

1)
$$K_1 = \int (t, y_n)$$
 $K_2 = \int (t + \frac{2}{5}h, y_n + \frac{2}{5}k_1 \cdot h)$
 $Y_{n+1} = Y_n + h \left[\frac{1}{4}k_1 + \frac{2}{4}k_2 \right]$

2)
$$k_1 = -4 \cdot \gamma_0 = -12$$

$$k_2 = -4 \left[\gamma_0 + \frac{2}{3} \cdot \frac{1}{3} \cdot -12 \right] = -4 \cdot 1 = -4$$

$$\Rightarrow \gamma(0.25) = 3 + \frac{1}{4} \left[\frac{1}{4} \cdot -12 \cdot \frac{2}{4} \cdot -4 \right]$$