Quiz # 4

Math 128A - 105: Fall 2024

Solutions

Date: 30/10/2024

For full credit, please clearly show all your work.

Problem 1

Consider the quadrature rule for the domain $\int_0^1 f(x) dx$ with points and weights given by:

1.
$$x_1 = 0$$
, $x_2 = \frac{1}{6}$, $x_3 = 1$

2.
$$w_1 = -\frac{1}{2}$$
, $w_2 = \frac{6}{5}$, $w_3 = \frac{3}{10}$

What is the precision of this quadrature rule?

Precision 1 2

$$2:\int_{0}^{1} x^{2} dx = \frac{1}{3}, Quedienten: Z_{n;x;^{2}}$$

= $\frac{1}{5}:\frac{1}{36} + \frac{3}{6}:1 = \frac{3}{30}:\frac{1}{30} = \frac{10}{30} = \frac{1}{3}$

$$=\frac{6}{5}\cdot\frac{1}{65}+\frac{3}{10}\cdot 1=\frac{1}{5\cdot 36}+\frac{3}{10}\mp\frac{1}{4}$$

Problem 2

Use the quadrature rule from the previous question to approximate the integral

$$\int_{1}^{4} e^{x} dx$$

You can leave your answer in terms of powers of e.

Charge of worldha:

$$y = \frac{x-1}{3}, dy = \frac{1}{3}dx$$

$$= \int_{0}^{1} e^{3y+1} dy \cdot 3$$

$$= 3 \left[-\frac{1}{2} e^{3\cdot 0+1} + \frac{6}{5} e^{3\cdot 1+1} + \frac{3}{10} e^{3\cdot 1+1} \right]$$

$$= 3 \left[-\frac{1}{2} e^{4y+1} + \frac{6}{5} e^{3y+1} + \frac{3}{10} e^{3y+1} \right]$$