Order of conveyence - Fixed Paht Kinitian
Recall: X_{N+1} = g(X_n), at lind x=g(X),
Order of conveyence for sequences:

$$E \times a = - \times \int_{1}^{1} \lim_{n \to \infty} \frac{|x_{n+1} - x|}{|x_{n} - x|^{\kappa}} = A$$

 $A = O$, then $E \times a = - \times$
with order K .

Example $p_n = 2^{-n} \lim_{n \to \infty} p_n = 0$ $\lim_{n \to \infty} \frac{|p_{n+1} - 0|}{|p_n - 0|^{\alpha}} \lim_{n \to \infty} \frac{2^{-n-1}}{2^{-\alpha n}}$

$$= \begin{cases} 0 & | & | \\ | & | & | \\ 2 & | & | \\ 0 & | & | \\ 0 & | & | \\ 0 & | & | \\ 0 & | & | \\ 0 & | & | \\ 0 & | & | \\ 0 & | & | \\ 0 & | \\$$

- - 2 mearly concernent.

How to maybe accelerate fixed port urthant doby Newton? NOTE: Notrody actually really closes this.... 1) Ailken 2) Steffenson

If Exn J-nx knuly, Aitken: $\frac{1}{1} \frac{1}{1} \frac{1}$

Basically conjute Cong - Con , as $\lim_{n \to \infty} C_{nn} - C_n = 0$

$$= 0 \stackrel{\times}{=} \frac{x_{m2} \cdot x}{x_{m1} \cdot x} - \frac{x_{m1} \cdot x}{x_{n} \cdot x} , sduf x$$

$$= \sum_{x_n=A(x_n, x_{n+1}, x_{n+2})}^{n} = \frac{x_n x_{n+2} - x_{n+1}}{x_n - 2x_{n+1} + x_{n+2}}$$

<u>Steffurson</u>: How lo inpone Aithen?

10 Fet One slop of Atthen only needs two of poppi to work

----- po 2) Compute pi=g(po) 3) Arthen: po = Aithen (Ko, K, K) 4) Set po= po, and go-h day (1)