
	· · · · · · · · · · · · · · · · · · ·
651: Lewis Pan y	llpan@berkeky.edn
	ath.berkeley.edu / ~ yllpan
Office Hours: TBA	(will send cmail)
<course structure=""></course>	-HW (due Weekly on Wednesday)
· · · · · · · · · · · · · · · · · · ·	- Quizzes every 2 weeks (first on Sept 11)
· · · · · · · · · · · · · · · · · ·	-Programming assignment
	- Midterm
· · · · · · · · · · · · · · · · · ·	- Final
· · · · · · · · · · · · · · ·	
(Juizzes Must be Take	en in Section in person

X. please roview if unfamiliar Calculus review can draw in one penstroke 1) continuity **∖**' ≠ 1 (don't need E/& definition in this class) yes!! v No !! 2) differentiable ... gives slope of function f'(xo) = Slope of this line ∕f(×) /f(x) f'(x.) docsnfexist! 3) Taylor series is infinitely differentiable at assume + pt xo sin(x), cos (x), polynomials Taylor exp of f(x) @ 20 $f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!} (x-x_0)^2 + \sum_{k=3}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$

min

_

•		•	•								•									•			•								٠	•	•			•				•	•	•	•
	_		İ											7						4	nė .			. e 4	ha			. .	ſ,		. 1	•											
		٠	9			٠						b					•			ļl	, 6 Y	Ľ	e¥	10/	5		CH 1	Ē,	L 0		J	. ð	Ľ										
•																								•	f	[]) .		N .														
	. •							•			•									•		•			J																٠		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•																					•	•	•	•	•	•	•	•	•
•	•	•	•	•		•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		•	•		•	•	•	•	•		•	•	•	•	•
٠	•	•	٠		•	٠	•	•	٠	٠	•		•	٠	•	٠	٠	•	•	٠	•	•	٠	•		٠	•	٠	•		٠	•	•	٠	•	•			٠	•	٠	•	•
											•									۰		•	٠								۰		•										
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	·	•	•

6) Mean value theorem . important! For f differentiable on [a,b], there exists some pt de [a,b] st $\frac{f(b)-f(a)}{b-a}=f'(d)$ some pt between a and b w) slope=0 Q. must be some pt in between a and b where slope equals slope of where the blue line = (ine between (a, f(a)) and (b, f(b))