True/False:

- 1. The rate of convergence of $\cos(2h)+2h\sin(h)$ as $h\to 0$ is $O(h^2)$
- 2. If $g(x)$ is a continuous function on the real line with $g(1) = -3$ and $g(2) = 1$, then g has at least one fixed point

1) F.
$$
\omega_{0} (2h) = 1 - (2h)^{2} - \frac{(2h)^{4}}{4!} - \cdots
$$

\n $\sin(h) = h - \frac{h^{3}}{3!} + \frac{h^{5}}{6!} - \cdots$
\n $\omega_{0} (2h) + 2h\sin(h) = 1 + O(h^{4})$

$$
z\leftarrow
$$
 Find p^{l} : $x = g(x)$,
1V1 and the up is defined here.

Consider $f(x) = (x - \cos(x))^3$.

- 1. Find starting point a, b such that the bisection method is guaranteed to converge. What is the order of convergence?
- 2. Use Newton's method to find an iteration $x_{n+1} = g(x_n)$ to find a root of $f(x)$

1)
$$
11 = 0
$$
, $f(0) = (-1)^{3} = 1$
\n $b = \frac{\pi}{2}, f(\frac{\pi}{2}) = (\frac{\pi}{2} - \omega(\frac{\pi}{2}))^{3}$ 70
\n $\int_{0}^{2} I_{-1}(\frac{\pi}{2}) \omega \omega ds$.
\n2) $x_{hel} = x_{0} - \frac{[x - \omega(x)]^{3}}{3[x_{0} - \omega(x_{0})]} [1 + \sin(x_{h})]$

Consider the fixed point iteration $p_{n+1} = g(p_n)$ where $g(x) = \frac{1}{1+e^x}$:

- 1. Show that p_n converges to a unique fixed point for any initial guess $p_0 \in \mathbb{R}$
- 2. Find some other fixed point iteration $p_{n+1} = h(p_n)$ which converges to the same point but does so quadratically. Justify why your new fixed point iteration is quadratically convergent

1)
$$
g^{11}x^{3} = e^{x} \cdot \frac{1}{(1+e^{x})^{2}} < 0
$$
 WeER
\n
$$
\lim_{x \to -\infty} \int_{0}^{(x)} f(x) dx = 1
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int_{0}^{(x)} f(x) dx = 0
$$
\n
$$
\lim_{x \to \infty} \int
$$

Let $\alpha > 1$ and $\lambda > 0$. Consider the following sequence:

$$
p_k = \lambda^{\alpha^k}, \ k = 1, 2, 3, ...
$$

- 1. Find conditions under which $\lim_{k\to\infty} p_k = 0$
- 2. In the case where the limit is zero, find the order of convergence of this sequence

1) As $\alpha > 1$, $\alpha^k > 1$ $\Rightarrow H^{|\mathbb{A}|<1}, \lim_{k\to\infty} p_k \neq 0$ $Im \frac{|\rho_{k+1} - \rho|}{|\rho_{k+1}|^2}$ = $lim \frac{A^{\alpha^{k+1}}}{A^{\alpha^{k}}$. 10 μ α α β $|A|<1$ $=\begin{cases} 0, 6 < a \\ 1, 6 = a \\ 0, 6 > a \end{cases}$ 1 onder is

Find a polynomial that agrees with the function $f(x) = \sqrt{x}$ and its first derivative at $x = 0, 4$. If the polynomial is used to approximate $f(2.5)$, what is the error upper bounded by?

$$
\begin{array}{ccc}\n\begin{array}{ccc}\n\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2}\n\end{array}\n\end{array}
$$

=> $p(x-1) + \frac{1}{2}(x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{12}(x-1)^2$ $\int x^{-4}$

 $(x-1)^2$ $(x-4)^2$ $y^{(4)}(\xi)$ Enn:

 $1^{(9)}(x) = \frac{-15}{16x^{7/2}}$, decreery, so more at x=1 $= |term| \leq \frac{(2.5-1)^{2}(2.5-4)^{2} \cdot 15}{41}$