In [8]: using PyPlot

Points/Lines in 2D

In [2]:
 p = rand(10,2)
 plot(p[:,1], p[:,2], ".") #Marker type is important
 axis("equal"); grid(true);
In [3]: plot(p[:,1], p[:,2], "o-")
 #Marker type is important
 axis("equal"); grid(true);

In [4]: function clockwise_oriented(p1, p2, p3)
 # Return true if the line-segment between points p1,p2 is clockwise
 # oriented to the line-segment between points p1,p3
 return cross > 0
end

Out[4]: clockwise_oriented (generic function with 1 method)
In [5]: function convex_hull(p)
 # Find the nodes on the convex hull of the point array p using
 # the Jarvis march (gift wrapping) algorithm

 _, pointOnHull = findmin(first.(p)) # Start at left-most point
 hull = [pointOnHull] # Output: Vector of node indices on the conve

 while length(hull) ≤ 1 || hull[1] != hull[end] # Loop until closed
 nextPoint = hull[end] # First candidate, any p
 for j = 1:length(p) # Consider all other points
 if clockwise_oriented(p[hull[end]], p[nextPoint], p[j]) #
 nextPoint = j
 end
 end
 push!(hull, nextPoint) # Update current point
 end

 return hull
end

Out[5]: convex_hull (generic function with 1 method)
The way to understand the convex hull intuitively is this - imagine stretching a rubber band around a bunch of pins at the location of the points. The convex hull is the shape the rubber band will end up taking.

A shape whose convex hull is equal to itself is convex (there are loads of definitions of convexity). This is actually a very important feature for many applications (optimisation, solution of numerical PDEs, rendering, ...).

Interpolation

Why is this a bad idea? I stole/adapted the code from

https://www.matecdev.com/posts/julia-interpolation.html

(https://www.matecdev.com/posts/julia-interpolation.html)
function LagrangeInterp1D(fvals, xnodes, barw, t)
 numt = 0
 denomt = 0

 for j = 1 : length(xnodes)
 tdiff = t - xnodes[j]
 numt = numt + barw[j] / tdiff * fvals[j]
 denomt = denomt + barw[j] / tdiff

 if (abs(tdiff) < 1e-15)
 numt = fvals[j]
 denomt = 1.0
 break
 end
 end

 return numt / denomt
end

Equispaced points
EquispacedNodes(n) = [2*(j/n-0.5) for j=0:n]
EquispacedBarWeights(n) = [(-1)^j * binomial(n,j) for j=0:n]

f(x) = 1/(1 + 16*x^2)

f (generic function with 1 method)
This is called Runge's phenomenon, whereby high order interpolatory polynomials can oscillate wildly even though they are meant to be higher order accurate approximations of a function.

Bezier Curves
Bezier curves are an example of a parametric curve used to approximate a shape smoothly using polynomials. They were introduced for construction of cars in fact and are the basis of a lot of types of curves used in real practical applications.

In your homework you will explore a version of this known as a cubic spline to draw a car.

Here is a demo of sort of how Bezier curves work:

```python
In [7]: function eval_bezier(ctrlpts, x)
    #ctrlpts: control points
    #x: value at which to evaluate
    n = length(ctrlpts)-1
    val = [0.0,0.0]
    for i = 0:n
        val += binomial(n, i) * (1-x)^(n-i) * x^i * ctrlpts[i+1]
    end

    return val
end

Out[7]: eval_bezier (generic function with 1 method)
```
In [8]: function quad_demo()
 #Things to set
 t = 0.4 #Parameter at which to evaluate
 nsMOOTH = 30; #Smoothness of graph
 #Control points
 ctrlpt0 = [0,0]
 ctrlpt1 = [1,1]
 ctrlpt2 = [1.2,0.4]
 ctrlpts = [ctrlpt0, ctrlpt1, ctrlpt2]

 """DON'T TOUCH BELOW HERE""

 #Bezier part, evaluate Bezier Curve
 xvals = LinRange(0,1,nsMOOTH)
 xxvals = []
 yyvals = []
 for x in xvals
 vals = evalBezier(ctrlpts, x)
 push!(xxvals, vals[1])
 push!(yyvals, vals[2])
 end
 #Plot graph
 plot(xxvals, yyvals)

 #Plot control points and control polygon
 for i in 1:length(ctrlpts)-1
 plot([ctrlpts[i][1], ctrlpts[i+1][1]], [ctrlpts[i][2], ctrlpts[i+1][2]], ctrlpts[i+1], c=grey)
 end
 #DeCasteljau Algorithm
 ptA = ctrlpt0 + t * (ctrlpt1 - ctrlpt0)
 ptB = ctrlpt1 + t * (ctrlpt2 - ctrlpt1)
 plot(ptA[1], ptA[2], "ro")
 plot(ptB[1], ptB[2], "ro")
 ptC = ptA + t * (ptB - ptA)
 plot(ptC[1], ptC[2], "ro")
end

Out[8]: quad_demo (generic function with 1 method)

Bezier curves and other spline based curves define a control polygon, shown in black below, of the shape you roughly want your final product to look like. It may/may not depending on user preference be interpolatory, and just guides the shape of your curve.
In [9]: `quad_demo();`

So you see that the first red point is t along the first line, the second red point is t along the second line, and the middle red point is t along the line connecting the first two points. This is exactly how Bezier curves are defined.

Bezier curves are the building blocks for something called B-Splines (basis splines) which form a basis for the spline functions used in practice. You will be implementing in your hw a cubic spline (probably the most common one used).

The example below shows a cubic Bezier curve, which is similar to the cubic spline you will be doing but slightly different. (The cubic spline is interpolatory for one)

In [10]: `function cubic_demo()

 #Things to set
 t = 0.7 #Parameter at which to evaluate
 nsmooth = 30; #Smoothness of graph
 #Control points
 ctrlpt0 = [0,0]
 ctrlpt1 = [4,1]
 ctrlpt2 = [9,1]
 ctrlpt3 = [3,4]`
ctrlpts = [ctrlpt0, ctrlpt1, ctrlpt2, ctrlpt3]

"""DON'T TOUCH BELOW HERE"""

#Bezier part, evaluate Bezier Curve
xvals = LinRange(0,1,nsmooth)
xxvals = []
yyvals = []
for x in xvals
 val = eval_bezier(ctrlpts, x)
 push!(xxvals, val[1])
 push!(yyvals, val[2])
end
#Plot graph
plot(xxvals, yyvals)

#Plot control points and control polygon
for i = 1:length(ctrlpts)-1
 plot((ctrlpts[i][1], ctrlpts[i+1][1]),[ctrlpts[i][2], ctrlpts[...
end

#DeCasteljau Algorithm
ptA = ctrlpt0 + t * (ctrlpt1 - ctrlpt0)
ptB = ctrlpt1 + t * (ctrlpt2 - ctrlpt1)
plot(ptA[1], ptA[2], "ro")
plot(ptB[1], ptB[2], "ro")
ptC = ctrlpt2 + t * (ctrlpt3 - ctrlpt2)
plot(ptC[1], ptC[2], "ro")
ptD = ptA + t * (ptB - ptA)
ptE = ptB + t * (ptC - ptB)
plot(ptD[1], ptD[2], "go")
plot(ptE[1], ptE[2], "go")
ptF = ptD + t * (ptE - ptD)
plot(ptF[1], ptF[2], "go")

plot((ptB[1], ptC[1]),[ptB[2], ptC[2]],"r-")
plot((ptD[1], ptE[1]),[ptD[2], ptE[2]],"g-")

end

Out[10]: cubic_demo (generic function with 1 method)
Splines

Splines are piecewise polynomial representations of curves such that they can approximate a shape well but do not oscillate like polynomial interpolants.

In [11]: cubic_demo();

In [12]: using Dierckx

For demo purposes I'm using a package, derivation of these splines can be found on wikipedia or wolfram. Or you can just come and ask me (they can actually be very efficient derived from the Bezier curves above)

In [13]: spl = Spline1D(xnodes, f_sample)

Out[13]: Spline1D(knots=[-1.0, -0.733333 ... 0.733333, 1.0] (14 elements), k=3, extrapolation="nearest", residual=0.0)
So we see that this actually does it much better without any oscillations. This is because the spline is composed of low degree polynomials so cannot oscillate as much.

Delaunay Triangulation

```py
In [16]: using PyCall
```
In 2D, geometry becomes more complex, and to discretise, you need to define "elements." For example this can be by triangulating your domain - one famous method that is pretty much guaranteed to work (remarkably) is the Delaunay triangulation.

Some interesting properties of Delaunay:

1) The circles around each 3 points forming a triangle do not contain circumcentre of any other triangle

2) The minimum angle is maximised

3) Guaranteed to terminate (this is very important - otherwise it could infinite loop or something)

```
In [13]: function delaunay(p)
    tri = pyimport("matplotlib.tri")
    t = tri[:Triangulation](p[:,1], p[:,2])
    return Int64.(t[:,triangles] .+ 1)
end

Out[13]: delaunay (generic function with 1 method)
```

```
In [14]: function tplot(p, t, u=nothing)
    clf()
    axis("equal")
    if u == nothing
        tripcolor(p[:,1], p[:,2], Array(t .- 1), 0*t[:,1],
                  cmap="Set3", edgecolors="k", linewidth=1)
    else
        tricontourf(p[:,1], p[:,2], Array(t .- 1), u[:,], 20)
    end
    draw()
end

Out[14]: tplot (generic function with 2 methods)
```
In [15]:
p = randn(10,2)*2
t = delaunay(p)
tplot(p,t)
plot(p[:,1], p[:,2], ".", markersize=18), axis("equal");
You might ask why not quadrilaterals? Some people do indeed prefer quadrilaterals (I'm one of them) but they can be very difficult to work with for certain applications. They are very widely used still however, for example in films (Pixar, ILM, ...) quads are very heavily used.

If you're interested - read about something called subdivision surfaces/NURBS.