
2/28/22, 11:08 AM section6 - Jupyter Notebook

localhost:8888/notebooks/Desktop/section6.ipynb 1/7

In [1]:

In [2]:

Linear Algebra
One of the most important problems (and most studied problems) is that of solving . It's
actually surprisingly difficult for various reasons (speed, cutoff error, stability, etc...)

Let's look at one such problem with stability:

𝐴𝑥 = 𝑏

In [3]:

In [4]:

In [5]:

In [6]:

In [7]:

So the norm is clearly not zero, so this did not solve properly... What happened?

The answer is that the above matrix is extremely close to being singular:

𝐴𝑥 = 𝑏

In [8]:

This is one of the key points of numerical algorithms - stability. We are not going to go into a lot
of detail here at all, but the closer your matrix is to being singular, the worse numerically it will

Out[3]: 2×2 Matrix{Float64}:

2.0 0.9

1.2 0.54

Out[4]: 2×2 Matrix{Float64}:

 5.4e8 -9.0e8

-1.2e9 2.0e9

Out[5]: 2-element Vector{Float64}:

100.1

200.2

Out[6]: 2-element Vector{Float64}:

-1.261259895142388e11

 2.8027997680953076e11

Out[7]: 0.00012207031251136867

Out[8]: 1.000000082740371e-9

using LinearAlgebra

using PyPlot

A = [[2.0, 1.2] [0.9, 0.54+5e-10]]

inv(A)

b = [100.1, 200.2]

x = inv(A)*b

norm(A * x - b)

det(A)

2/28/22, 11:08 AM section6 - Jupyter Notebook

localhost:8888/notebooks/Desktop/section6.ipynb 2/7

perform. This is entirely due to numerical cutoff, algebraically everything is still exact.

How can we quantify how bad? That is how close to being singular? This is the concept of a
condition number:

In [9]:

The larger the condition number the closer to being singular. The optimal is 1, the identity
matrix. There are ways to get around inverting this that are more stable:

In [10]:

In [11]:

This is better but still not amazing - there are fancier methods to do this (outside scope of this
course) such as preconditioning etc.

Moral of the story is ill-conditioned matrices lead to bad numerical answers and that some
algorithms fare better in bad cases than others.

Polynomial Interpolation
This is related to your hw problem but will need to be modified. The problem is this: given
pairs of x,y coordinates, can we interpolate a polynomial through these points? (Hint: the
answer is yes)

This is actually a linear algebra problem.

Say we have points. Then hopefully should be easy to see the interpolating polynomial
here is the constant one through that point.

Say we have 3 points (x1,y1), (x2,y2), (x3,y3). Then we can interpolate a polynomial through
this of the form . Why? 3 degrees of freedom.

Thus we need to satisfy:

This is same as the following linear system:

𝑛

𝑛 = 1

𝑝(𝑥) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2

𝑝() =𝑥1 𝑦1
𝑝() =𝑥2 𝑦2
𝑝() =𝑥3 𝑦3

Out[9]: 6.541601390762973e9

Out[10]: 2-element Vector{Float64}:

-1.2612598951423882e11

 2.802799768095307e11

Out[11]: 1.364787585194269e-5

cond(A)

x2 = A \ b

norm(A*x2 - b)

2/28/22, 11:08 AM section6 - Jupyter Notebook

localhost:8888/notebooks/Desktop/section6.ipynb 3/7

In [12]:

In [13]:

In [14]:

In [15]:

[0.6640692954012222, 0.7365261153556082, 0.8843757675554409]

[0.27962598475420775, 0.39883581471865637, 0.5611293551730343]

Out[13]: 3×3 Matrix{Float64}:

1.0 0.664069 0.440988

1.0 0.736526 0.542471

1.0 0.884376 0.78212

Out[14]: 3-element Vector{Float64}:

-2.0285798858832567

 5.126360756738726

-2.4854482043710666

Out[15]: p (generic function with 1 method)

x = rand(3); y = rand(3);

println(x)

println(y)

A = [[1,1,1] [x[1], x[2], x[3]] [x[1]^2, x[2]^2, x[3]^2]]

coeffs = A \ y

p(x) = coeffs[1] + coeffs[2]*x + coeffs[3]*x^2

2/28/22, 11:08 AM section6 - Jupyter Notebook

localhost:8888/notebooks/Desktop/section6.ipynb 4/7

In [16]:

The matrix is called a Vandermonde matrix. It turns out that they can be very ill-conditioned in
practice but there are fancy ways to deal with this.

𝐴

String Processing
Strings are just words basically:

In [17]:

Special characters are indicated with a backslash, for example \n is string for newline, \t
for tab

Out[16]: 1-element Vector{PyCall.PyObject}:

PyObject <matplotlib.lines.Line2D object at 0x7f16edba4e20>

hello, I am a string

xpts = LinRange(0,1,20)

ypts = [p(x) for x in xpts]

plot(xpts, ypts)

plot(x[1], y[1], "ko")

plot(x[2], y[2], "ko")

plot(x[3], y[3], "ko")

println("hello, I am a string")

2/28/22, 11:08 AM section6 - Jupyter Notebook

localhost:8888/notebooks/Desktop/section6.ipynb 5/7

In [18]:

To put two strings together

In [19]:

To add in other types as arguments to strings, use the $ operator

In [20]:

Strings are honestly just arrays of characters, so can index into them as such

In [21]:

To convert string input into other types, use the parse command

In [22]:

This is really helpful when reading in data, as ALL data read in from any file is always in string
format. To read in a file/writing from a file, you need to open the file, then you can read it in line
by line

f = open("filename.ext")

str = readline(f)

Obviously the filename needs to be correct. To write similarly

write(f, "some string")

Lastly you can also search for patterns in strings:

hello

I am a string

Out[19]: "Hi I am a string"

Vandermonde A: [1.0 0.6640692954012222 0.44098802909467566; 1.0 0.7365

261153556082 0.5424707186008226; 1.0 0.8843757675554409 0.782120498239

2752]

Out[21]: 'n': ASCII/Unicode U+006E (category Ll: Letter, lowercase)

Out[22]: 1234.0

println("hello \n I am a string")

string("Hi", " I am a string")

println("Vandermonde A: $A")

"Vandermonde"[3]

parse(Float64, "1234")

2/28/22, 11:08 AM section6 - Jupyter Notebook

localhost:8888/notebooks/Desktop/section6.ipynb 6/7

In [23]:

Which will give you the position of the desired pattern. One useful tool for this is regex (regular
expressions)

In [24]:

You can read more about this yourself online or come ask me in OH, but the way it works for the
above is \d is any digit 0-9, {2} means it appears twice. So we are looking for something of
the format dd/mm/yyyy. It will then return the position of anything that matches this pattern. Here
is a list of regex commands (common ones)

\d is digits = [0-9]

\w is alphabetical letter = [a-z]

capital letters [A-Z]

any letter [A-Za-z]

how many times it appear, put {number} afterwards

\s is whitespace

In [25]:

In [26]:

In [27]:

In [28]:

In []:

Out[23]: 8:10

Out[24]: 10:19

Out[25]: "asdasdnq192371jajs12"

Out[26]: r"\w\d{3}"

Out[27]: 1-element Vector{UnitRange{Int64}}:

8:11

Out[28]: "q192"

str = "Hello, World! These are my words."

pattern = "wor"

idx1 = findfirst(pattern, lowercase(str))

str1 = "birthday=01/01/2000"

pattern = r"\d{2}/\d{2}/\d{4}"

idx1 = findfirst(pattern, str1)

randstring = "asdasdnq192371jajs12"

pattern4 = r"\w\d{3}"

findall(pattern4, randstring)

randstring[findfirst(pattern4, randstring)]

2/28/22, 11:08 AM section6 - Jupyter Notebook

localhost:8888/notebooks/Desktop/section6.ipynb 7/7

