
2/2/22, 1:09 AM section3 - Jupyter Notebook

localhost:8888/notebooks/Desktop/124/section3.ipynb 1/8

Arrays

Basically lists of things

In [1]:

Access to it is done using square brackets - rememeber julia has 1 indexing instead of 0
indexing unlike python/c/...

In [2]:

In [3]:

You can also access elements at the end

In [4]:

In [5]:

The type of a list is the most common ancestor of all the types of things in the list

Out[1]: 4-element Vector{Any}:

0

1

3

 "asd"

BoundsError: attempt to access 4-element Vector{Any} at index [0]

Stacktrace:

[1] getindex(A::Vector{Any}, i1::Int64)

 @ Base ./array.jl:801

[2] top-level scope

 @ In[2]:1

[3] eval

 @ ./boot.jl:360 [inlined]

[4] include_string(mapexpr::typeof(REPL.softscope), mod::Module, cod

e::String, filename::String)

 @ Base ./loading.jl:1116

Out[3]: 0

Out[4]: "asd"

Out[5]: 3

list1 = [0 ,1, 3, "asd"]

list1[0]

list1[1]

list1[end]

list1[end-1]

2/2/22, 1:09 AM section3 - Jupyter Notebook

localhost:8888/notebooks/Desktop/124/section3.ipynb 2/8

In [6]:

In [7]:

In [8]:

In [9]:

Although this doesn't matter as much as in C as it is dynamically typed, meaning you can just
insert a string into an int list for example without impunity in Julia, this will actually make your
code run slower. This is because Julia is just-in-time compiled (if you want more details I can
expand in office hours) so keeping a list to a specific type will speed things up.

Vectors and Matrices

For this class an in general for mathematical computing, we mainly care about 1D/2D arrays of
numbers (vectors/matrices). The package in Julia for a lot of the operations you will be using
(e.g. inverse, determinants, ...) is called LinearAlgebra

In [10]:

In [11]:

Out[6]: 5-element Vector{Int64}:

0

1

2

3

4

Out[7]: 3-element Vector{Float64}:

 0.0

 1.1

2341.12

Out[8]: 3-element Vector{ComplexF64}:

0.0 + 0.0im

1.0 + 1.0im

0.1 + 0.0im

Out[9]: 3-element Vector{Any}:

0

1

 "string"

Out[11]: 3-element Vector{Int64}:

1

0

0

intList = [0,1,2,3,4]

floatList = [0,1.1,2341.12]

complexList = [0, 1+im, 0.1]

anyList = [0, 1, "string"]

using LinearAlgebra

vec = [1, 0, 0]

2/2/22, 1:09 AM section3 - Jupyter Notebook

localhost:8888/notebooks/Desktop/124/section3.ipynb 3/8

In [12]:

Indexing is done as follows, not for a matrix you need two index numbers as it is a 2D array. The
index is [row,column]

In [13]:

In [14]:

You can do the expected operations, such as matrix multiply, addition subtraction of vectors and
matrices:

In [15]:

In [16]:

In [17]:

One of the most common commands is to solve the equation Ax = b (i.e. calculate , you
could do this explicitly

𝑏)𝐴
−1

Out[12]: 3×3 Matrix{Int64}:

1 0 0

0 1 2

0 1 3

Out[13]: 1

Out[14]: 0

Out[15]: 3-element Vector{Int64}:

1

0

0

Out[16]: 3-element Vector{Int64}:

2

3

1

Out[17]: 3-element Vector{Int64}:

3

3

1

A = [[1,0,0] [0,1,1] [0,2,3]]

vec[1]

A[1,2]

A*vec

vec2 = [2,3,1]

vec+vec2

2/2/22, 1:09 AM section3 - Jupyter Notebook

localhost:8888/notebooks/Desktop/124/section3.ipynb 4/8

In [18]:

Or there is special syntax for this that does not explicitly compute the inverse of A:

In [19]:

It turns out computing the inverse explicitly is a really bad idea! Let's see why with a randomly
generated matrix of size 5000:

In [20]:

In [21]:

In [22]:

So it looks like backslash is 2-3 times faster! In fact for a lot of matrices backslash can be even
faster than that compared to direct inversion (this is because \ has some very fancy algorithms
behind it QR, Cholesky, PLU, ..., ask me if you want to know more)!

Plotting

I believe for this course we will mainly be using the PyPlot package. There do exist others in
Julia (e.g. Plots, GR, Makie, ...) but we will stick with PyPlot for ease of use.

In [23]:

To generate a simple line plot, we need an array of x and y values:

Out[18]: 3-element Vector{Float64}:

1.0

0.0

0.0

Out[19]: 3-element Vector{Float64}:

1.0

0.0

0.0

 2.055235 seconds (436.01 k allocations: 215.919 MiB, 0.61% gc time,

8.77% compilation time)

 5.123473 seconds (2.22 M allocations: 310.770 MiB, 0.95% gc time, 1

1.81% compilation time)

invA = inv(A)

invA * vec

A \ vec

Arand = rand(5000, 5000);

brand = rand(5000, 1);

@time Arand \ brand;

@time inv(Arand) * brand;

using PyPlot

2/2/22, 1:09 AM section3 - Jupyter Notebook

localhost:8888/notebooks/Desktop/124/section3.ipynb 5/8

In [24]:

The above code generates 20 points equidistant from 0 to 1. Now to get some y values, let's
say of the function:sin(𝜋𝑥)

In [25]:

I used something here called a list comprehension, it is basically a shortcut for a for loop in that
it applies the specified function (here sin) to all x in xvals. To plot it:

In [26]:

It looks a bit rough so can increase number of sample points:

Out[24]: 20-element LinRange{Float64}:

0.0,0.0526316,0.105263,0.157895,0.210526,…,0.842105,0.894737,0.94736

8,1.0

Out[26]: 1-element Vector{PyCall.PyObject}:

PyObject <matplotlib.lines.Line2D object at 0x7f82e1cf3b50>

xvals = LinRange(0,1,20)

sinvals = [sin(pi*x) for x in xvals];

plot(xvals, sinvals)

2/2/22, 1:09 AM section3 - Jupyter Notebook

localhost:8888/notebooks/Desktop/124/section3.ipynb 6/8

In [27]:

And that looks better! To label the axes:

Out[27]: 1-element Vector{PyCall.PyObject}:

PyObject <matplotlib.lines.Line2D object at 0x7f82e20859d0>

xvals = LinRange(0,1,40);

sinvals = [sin(pi*x) for x in xvals];

plot(xvals, sinvals)

2/2/22, 1:09 AM section3 - Jupyter Notebook

localhost:8888/notebooks/Desktop/124/section3.ipynb 7/8

In [28]:

The L in front of the string tells PyPlot that it is LaTeX notation.

There are lots of other possible commands to customise your plots - google them!

In []:

Out[28]: PyObject Text(0.5, 1, '$\\sin(\\pi x)$')

plot(xvals, sinvals, "ko-") #The "k" means its a black curve, o turns

xlabel("x")

ylabel("y")

title(L"\sin(\pi x)")

2/2/22, 1:09 AM section3 - Jupyter Notebook

localhost:8888/notebooks/Desktop/124/section3.ipynb 8/8

