Problem 1 - Computational geometry

Given a function $f(x)$ defined on $[0, 1]$, and its derivatives $f'(x), f''(x)$ draw the osculating circle of at a point $x_0 \in (0, 1)$.

An osculating circle at x_0 is the circle that passes through the point and has the same tangent and curvature of the curve at $f(x_0)$.

Reminder that curvature can be written as $\frac{f''(x)}{(1+f'(x))^\frac{3}{2}}$

Solution:

```python
In [2]: function osculatingCircle( f, df, d2f, x0 )

    #Calculate function and derivatives
    fx0 = f(x0);
    dfx0 = df(x0);
    d2fx0 = d2f(x0);

    #Calculate circle quantities
    kappa = d2fx0 / abs( 1.0+dfx0 )^(3.2);
    radius = 1/kappa;
    vec = [-dfx0,1];
    vec /= norm(vec)
    centre = [x0, fx0] + vec*radius;

    #Draw function
    xpts = LinRange(0,1,40);
    ypts = [f(x) for x in xpts];
    plot(xpts, ypts, "b-")

    #Draw circle
    theta = LinRange( 0, 2*pi, 50 )
    xpts = [ radius*cos(t)+centre[1] for t in theta ]
    ypts = [ radius*sin(t)+centre[2] for t in theta ]
    plot(xpts, ypts, "r-")
```

Out[2]: osculatingCircle (generic function with 1 method)
Problem 2 - Optimisation

Part 1: Write out the Taylor Series approximation for \(f(x_0 + h) \) centred at the point \(x_0 \) up to second order terms.

Part 2: Write out the Taylor Series approximation for \(f(x_0 - h) \) centred at the point \(x_0 \) up to second order terms.

Part 3: Combine these two to get an approximation for the first derivative \(f'(x_0) \).

Part 4: Use this approximate derivative to implement gradient descent to minimise some function \(f(x) \) (100 maximum iterations, \(h = 1e-4, \alpha=0.1 \)).
Solution

1) \(f(x_0 + h) = f(x_0) + hf(x_0) + \frac{h^2}{2} f''(x_0) \)

2) \(f(x_0 - h) = f(x_0) - hf(x_0) + \frac{h^2}{2} f''(x_0) \)

3) \(\frac{f(x_0+h)-f(x_0-h)}{2h} \approx f'(x_0) \)

Code for part 4:

```python
In [4]: function approxGradientDescent( f, x0 )

    maxiters = 100;
    prevx = 0.0;
    currx = x0;
    h = 1e-4;
    alpha = 0.1;

    for iter = 1:maxiters
        dfx = ( f( currx+h ) - f( currx-h ) ) / ( 2*h );
        prevx = currx + 0.0;
        currx = currx - alpha * dfx;
        if abs( prevx-currx ) < 1e-8
            return currx
        end
    end

    return currx
end

Out[4]: approxGradientDescent (generic function with 1 method)

In [5]: f1(x) = cos(x)^2

approxGradientDescent( f1, 0.1 )

Out[5]: 1.5707962946425253
Problem 3 - Graphs

A bipartite graph is one where you can separate nodes into two groups $A$, $B$ such that each edge of the graph connects a vertex of $A$ to one of $B$.

Edit BFS to determine whether a graph is bipartite.

```julia
In [6]: struct Vertex
 neighbors::Vector{Int} # Indices of neighbors of this Vertex
 coordinates::Vector{Float64} # 2D coordinates of this Vertex – only
Vertex(neighbors; coordinates=[0,0]) = new(neighbors, coordinates)
end

function Base.show(io::IO, v::Vertex)
 print(io, "Neighbors = ", v.neighbors)
end

In [7]: struct Graph
 vertices::Vector{Vertex}
end

function Base.show(io::IO, g::Graph)
 for i = 1:length(g.vertices)
 println(io, "Vertex $i, ", g.vertices[i])
 end
end
```
In [8]:

```python
function PyPlot.plot(g::Graph; scale=1.0)
 fig, ax = subplots()
 ax.set_aspect("equal")

 xmin = minimum(v.coordinates[1] for v in g.vertices)
 xmax = maximum(v.coordinates[1] for v in g.vertices)
 ymin = minimum(v.coordinates[1] for v in g.vertices)
 ymax = maximum(v.coordinates[2] for v in g.vertices)
 sz = max(xmax-xmin, ymax-ymin)
 cr = scale*0.05sz
 hw = cr/2
 axis([xmin-2cr,xmax+2cr,ymin-2cr,ymax+2cr])
 axis("off")

 for i in 1:length(g.vertices)
 c = g.vertices[i].coordinates
 ax.add_artist(matplotlib.patches.Circle(c, cr, facecolor="none")
 ax.text(c[1], c[2], string(i),
 horizontalalignment="center", verticalalignment="center")
 for nb in g.vertices[i].neighbors
 cnb = g.vertices[nb].coordinates
 dc = cnb .- c
 L = sqrt(sum(dc.^2))
 c1 = c .+ cr/L * dc
 c2 = cnb .- cr/L * dc
 arrow(c1[1], c1[2], c2[1]-c1[1], c2[2]-c1[2],
 head_width=hw, length_includes_head=true, facecolor=
 end
 end
end
```

Here is an example of a bipartite graph:
Here is BFS:
In [10]: function bfs(g::Graph, start)
    
    visited = falses(length(g.vertices))
    S = [start]
    visited[start] = true
    
    while !isempty(S)
        ivertex = popfirst!(S)
        println("Visiting vertex #$ivertex")
        for nb in g.vertices[ivertex].neighbors
            if !visited[nb]
                visited[nb] = true
                push!(S, nb)
            end
        end
    end

Out[10]: bfs (generic function with 1 method)

Solution:
In [11]: function isBipartite(g::Graph, start)
    isAB = -ones(Int, length(g.vertices))
    isAB[start] = 0

    visited = falses(length(g.vertices))
    S = [start]
    visited[start] = true
    while !isempty(S)
        ivertex = popfirst!(S)
        println("Visiting vertex #$ivertex")
        for nb in g.vertices[ivertex].neighbors
            if !visited[nb]
                visited[nb] = true
                isAB[nb] = 1-isAB[ivertex];
                push!(S, nb)
            else
                if isAB[nb] == isAB[ivertex]
                    return false
                end
            end
        end
    end
    return true
end

Out[11]: isBipartite (generic function with 1 method)

In [12]: isBipartite(g1, 1)
Visiting vertex #1
Visiting vertex #4
Visiting vertex #6
Visiting vertex #2
Visiting vertex #5
Visiting vertex #3

Out[12]: true

In [ ]: