Floating Point Numbers Review

Reminder that normalised floating point numbers are stored as

\[-1^n \times 1.d_1d_2\ldots d_n \times 2^{\text{exp}}\]

or equivalently

\[-1^n \times \left(1 + d_1 \cdot 2^{-1} + d_2 \cdot 2^{-2} + \ldots + d_n \cdot 2^{-n}\right) \times 2^{\text{exp}}\]

where \(s = 0, 1\) is the sign bit, \(d_i = 0, 1\) are the mantissa bits and the exponent \(\text{exp}\) ranges from \(\text{exp}_{\text{min}}\) to \(\text{exp}_{\text{max}}\). Normalised means that \(d_0 = 1\).

For example, the Float32 data structure is normalised and has 1 sign bit, 8 exponent bits, and 23 mantissa bits (also known as precision bits). The exponent is given as the number represented in the exponent bits - 127.

Question 1

What is \(\frac{1}{2}\) in Float32?

Sign bit \(s = 0\)

0.5 = \(1.0000000 \times 2^{-1}\) in binary

So \(\text{exp} = 127 - 1 = 126 = 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 = 01111110\) in binary

So representation in Float32 = \(0\ 01111110\ 0000...000\)

Question 2

What is 0.75 in Float32?

Sign bit \(s = 0\)

0.75 = 0.5 + 0.25 = \(1.1000000 \times 2^{-1}\) in binary

So \(\text{exp} = 127 - 1 = 126 = 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 = 01111110\) in binary

So representation in Float32 = \(0\ 01111110\ 1000...000\)
Question 3

What is the smallest (positive) integer not represented exactly using Float32?

Any positive power of 2 less than $2^{255-127}=128$ is represented exactly. This is because you can just set the mantissa to zero and the exponent power to be what you want.

This means that $2^{23} + 1$ is the largest integer not represented exactly. Any integer less than 2^{23} can be represented exactly using the 23 mantissa bits, while 2^{23} cannot be it is a power of 2 so can be done also by setting the mantissa to zero and setting the correct exponent.

Question 4

What is the smallest Float32 number greater than 1?

1 in Float32 $= 1.000000 \times 2^0$ in binary

So next biggest number is just increasing the mantissa by smallest thing possible $= 1.000000...01 \times 2^0$ in binary $= 1 + 2^{-23}$

Differential Equations Review

The most basic case is solving a scalar ODE with initial condition $y(x_0) = y_0$

$y'(x) = f(x, y(x))$

The first step is to apply the fundamental theorem of calculus and write this as an integral equation

$y(x) = y_0 + \int_{x_0}^{x} y'(s)ds$

Plug in the formula

$y(x) = y_0 + \int_{x_0}^{x} f(s, y(s))ds$

Then the goal is to approximate the integral term using whatever method you like.

Question 1

Approximate the integral using a left Riemann sum. What is the resulting scheme?
This is Forward Euler. Approximate integral is
\[\int_{x_0}^{x} f(s, y(s)) \, ds \approx (x - x_0) f(x_0, y_0) \]
Which gives the scheme
\[y(x) = y_0 + (x - x_0) f(x_0, y_0) \]

Question 2

Approximate the integral using the trapezoidal rule. What is the resulting scheme?

Approximate integral is
\[\int_{x_0}^{x} f(s, y(s)) \, ds \approx (x - x_0) \left(f(x_0, y_0) + f(x, y(x)) \right) * 0.5 \]
Which gives the scheme
\[y(x) = y_0 + (x - x_0) \left(f(x_0, y_0) + f(x, y(x)) \right) * 0.5 \]

Question 3

Consider the case now where \(f'(x) = 2f(x) \). Write code to find the solution at \(x = 1 \) using the trapezoidal rule. Use \(\Delta x = 10^{-2} \) and initial condition \(f(0) = 1 \).

Plot the computed solution and the exact solution (you need to solve for the exact solution).

Plugging in to the equation above gives the scheme:
\[
\begin{align*}
y(x) &= y_0 + (x - x_0)(2y_0 + 2y) * 0.5 \\
y(x) &= y_0 + (x - x_0)y + (x - x_0)y_0 \\
(1 - x + x_0)y(x) &= y_0 + (x - x_0)y_0 \\
y(x) &= \frac{(1 + x - x_0)y_0}{1 - x + x_0}
\end{align*}
\]
In [1]: using PyPlot

 function trapezoidal()
 dx = 1e-2;
 N = round(1/dx);
 xvals = [0.0];
 fvals = [1.0];
 x = 0.0;

 for ii = 1:N
 x += dx;
 push!(xvals, x);
 push!(fvals, (fvals[end] * (1+dx)) / (1-dx));
 end

 plot(xvals, fvals)
 plot(xvals, [exp(2*x) for x in xvals])
 end

Out[1]: trapezoidal (generic function with 1 method)

In [2]: trapezoidal();

So we see the solution matches up extremely well.

Question 4
Consider now the problem of \(f''(x) = -4f(x) \). Introducing a new variable \(v(x) = f'(x) \) rewrite this as a system of first order equations.

\[
\begin{align*}
v'(x) &= -4f(x), \quad f'(x) = v(x) \\
\begin{bmatrix} v(x) \\ f(x) \\ u' \end{bmatrix}' &= \begin{bmatrix} 0 & -4 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v(x) \\ f(x) \end{bmatrix}
\end{align*}
\]

Question 5

Code up the above using the trapezoidal rule. Set an initial condition of \(u(0) = 0, u'(0) = 2 \).

Plugging in to the equation above gives the scheme:

\[
\begin{align*}
u(x) &= u_0 + \frac{x-x_0}{2} (Au(0) + Au(x)) \\
u(x) &= u_0 + \frac{x-x_0}{2} Au(0) + \frac{x-x_0}{2} Au(x) \\
(I - \frac{x-x_0}{2} A)u(x) &= (I + \frac{x-x_0}{2} A)u_0 \\
u(x) &= (I - \frac{x-x_0}{2} A)^{-1} (I + \frac{x-x_0}{2} A)u_0
\end{align*}
\]

In [5]: using LinearAlgebra

function trapezoidalsystem()

```
dx = 1e-2;
N = round( 1/dx );
xvals = [0.0];
fvals = [ [2.0,0.0] ];
x = 0.0;

A = [ [0,1] [-4,0] ]

for ii = 1:N
  x += dx;
  push!( xvals, x );
  push!( fvals, ( I-dx*A*0.5 ) \ ( (I+dx*A*0.5)*fvals[end] ) );
end

plot( xvals, [ sin(2*x) for x in xvals] )
```

Out[5]: trapezoidalsystem (generic function with 1 method)
So the solution also matches well here.