Floating Point (10 Points)

The Float32 type in Julia represents numbers using 1 sign bit, 8 exponent bits, and 23 precision bits. Note that this representation is normalized. Explain your answers without using any code. No credit will be given to answers that are not properly justified.

Problem 1 (5 points)

What is the smallest Float32 ϵ such that $1 + \epsilon$ is a Float32 floating point number greater than 1?

Problem 2 - 5 Points

Is $2 + \epsilon$ a Float32 floating point number? (ϵ is the same as from the previous question)
Computational Geometry + Runtime Analysis (10 Points)

Consider the following code

\[
\text{thetas} = \text{rand}(n) \times 2 \times \pi \\
x = [\cos(t) \text{ for } t \text{ in thetas}]; y = [\sin(t) \text{ for } t \text{ in thetas}] \\
pt = [0.2, 0.3] \\
\text{minarea} = \text{Inf}; \text{index} = [0,0] \\
\text{for } i = 1:n \\
\quad \text{for } j = 1:n \\
\quad\quad \text{vec1} = [x[i] - pt[1], y[i] - pt[2]] \\
\quad\quad \text{vec2} = [x[j] - pt[1], y[j] - pt[2]] \\
\quad\quad \text{area} = \text{abs}(\text{vec1}[1]*\text{vec2}[2] - \text{vec1}[2]*\text{vec2}[1]) \times 0.5 \\
\quad\quad \text{if } \text{area} < \text{minarea} \\
\quad\quad\quad \text{minarea} = \text{area}; \text{index} = [i,j]; \\
\quad \end{align}
\]

Problem 3 - 5 Points

Describe briefly what the code does. You may find it helpful to draw a diagram.

Problem 4 - 5 Points

What is the runtime in big O notation? What about the cost in memory?