Producing Ricci flows by singular Ricci flows

Yi Lai

UC Berkeley

June 12, 2020
Structure of Talk:

- **Part I** Introduction
- **Part II** Singular Ricci flow
- **Part III** Generalized singular Ricci flow
- **Part IV** Proof of the main theorem
Part I Introduction
Ricci flow equation:

\[
\frac{d}{dt} g(t) = -2\text{Ric}(g(t))
\] (0.1)

Theorem (Hamilton)

Let \(M \) be a compact \(n \)-dimensional manifold, there exists a short time Ricci flow starting from \(M \).

Compact RF preserves \(\text{Ric} \geq 0 \) in 3d. Curvature blows up in finite time.

Theorem (Shi)

Let \(M \) be a complete \(n \)-dimensional manifold with bounded curvature, there exists a short time complete Ricci flow starting from \(M \).

Shi’s RF preserves \(\text{Ric} \geq 0 \) in 3d.
Ricci flow equation:

\[\frac{d}{dt} g(t) = -2 \text{Ric}(g(t)) \]

(0.1)

Theorem (Hamilton)

Let \(M \) be a compact \(n \)-dimensional manifold, there exists a short time Ricci flow starting from \(M \).

Compact RF preserves \(\text{Ric} \geq 0 \) in 3d. Curvature blows up in finite time.

Theorem (Shi)

Let \(M \) be a complete \(n \)-dimensional manifold with bounded curvature, there exists a short time complete Ricci flow starting from \(M \).

Shi’s RF preserves \(\text{Ric} \geq 0 \) in 3d.
Introduction

Theorem (Simon, Topping, 2017)

Let (M, g) be a 3d complete manifold. Suppose $Vol_g(B_g(x, 1)) \geq v_0$ (non-collapsing) and $\text{Ric} \geq -1$ everywhere (curvature lower bound). Then there exists a Ricci flow $(M, g(t)), t \in [0, T]$ with $g(0) = g$.

Idea: Take an exhaustion of M by compact subsets U_i. For each U_i, construct a local Ricci flow $(U_i, g_i(t)), t \in [0, T]$, by running Shi’s Ricci flow inductively. Take a limit of $(U_i, g_i(t))$ to get a Ricci flow $(M, g(t))$.

Two key curvature estimates:

- $|Rm|_{g_i(t)} \leq \frac{C}{t}$. Suppose this is not true, there is a sequence of Ricci flows converging to a κ-solution. The non-collapsing assumption implies the asymptotic volume ratio is non-zero, contradiction.
- $\text{Ric} \geq -C$, obtained by a bootstrap argument.
Theorem (Simon, Topping, 2017)

Let \((M, g)\) be a 3d complete manifold. Suppose \(\text{Vol}_g(B_g(x, 1)) \geq v_0\) (non-collapsing) and \(\text{Ric} \geq -1\) everywhere (curvature lower bound). Then there exists a Ricci flow \((M, g(t)), t \in [0, T]\) with \(g(0) = g\).

Idea: Take an exhaustion of \(M\) by compact subsets \(U_i\). For each \(U_i\), construct a local Ricci flow \((U_i, g_i(t)), t \in [0, T]\), by running Shi’s Ricci flow inductively. Take a limit of \((U_i, g_i(t))\) to get a Ricci flow \((M, g(t))\).

Two key curvature estimates:

- \(|\text{Rm}|_{g_i(t)} \leq \frac{C}{t}\). Suppose this is not true, there is a sequence of Ricci flows converging to a \(\kappa\)-solution. The non-collapsing assumption implies the asymptotic volume ratio is non-zero, contradiction.
- \(\text{Ric} \geq -C\), obtained by a bootstrap argument.
Introduction

Theorem (Simon, Topping, 2017)

Let (M, g) be a 3d complete manifold. Suppose $\text{Vol}_g(B_g(x, 1)) \geq \nu_0$ (non-collapsing) and $\text{Ric} \geq -1$ everywhere (curvature lower bound). Then there exists a Ricci flow $(M, g(t)), t \in [0, T]$ with $g(0) = g$.

Idea: Take an exhaustion of M by compact subsets U_i. For each U_i, construct a local Ricci flow $(U_i, g_i(t)), t \in [0, T]$, by running Shi’s Ricci flow inductively. Take a limit of $(U_i, g_i(t))$ to get a Ricci flow $(M, g(t))$.

Two key curvature estimates:

- $|\text{Rm}|_{g_i(t)} \leq \frac{C}{t}$. Suppose this is not true, there is a sequence of Ricci flows converging to a κ-solution. The non-collapsing assumption implies the asymptotic volume ratio is non-zero, contradiction.

- $\text{Ric} \geq -C$, obtained by a bootstrap argument.
Some invariant curvature conditions:

1. non-negative curvature operator;
2. non-negative complex sectional curvature (weakly PIC_2);
3. 2-non-negative curvature operator ($\text{Ric} \geq 0$ in 3d);
4. weakly PIC_1;

$(1)(2) \Rightarrow \text{sec} \geq 0 \Rightarrow (3)(4) \Rightarrow \text{Ric} \geq 0$
Some invariant curvature conditions:

(1) non-negative curvature operator;
(2) non-negative complex sectional curvature (weakly PIC_2);
(3) 2-non-negative curvature operator ($\text{Ric} \geq 0$ in 3d);
(4) weakly PIC_1;

$(1)(2) \Rightarrow \sec \geq 0 \Rightarrow (3)(4) \Rightarrow \text{Ric} \geq 0$
Let (M, g) be an n dimensional complete manifold. Suppose $\text{Vol}_g(B_g(x, 1)) \geq v_0$ (non-collapsing) and one of the following curvature is bounded below by -1 (curvature lower bound). Then there exists a Ricci flow $(M, g(t)), t \in [0, T]$ with $g(0) = g$:

1. non-negative curvature operator;
2. non-negative complex sectional curvature (weakly PIC_2);

Idea: Take a limit of $(U_i, g_i(t))$.

Two key curvature estimates:

- $|Rm|_{g_i(t)} \leq \frac{C}{t}$.
- (1) (or $(2)) \geq -C$, obtained by a heat kernel method.
Let (M, g) be an n dimensional complete manifold. Suppose $\text{Vol}_g(B_g(x, 1)) \geq \nu_0$ (non-collapsing) and one of the following curvature is bounded below by -1 (curvature lower bound). Then there exists a Ricci flow $(M, g(t))$, $t \in [0, T]$ with $g(0) = g$:

1. non-negative curvature operator;
2. non-negative complex sectional curvature (weakly PIC_2);

Idea: Take a limit of $(U_i, g_i(t))$.

Two key curvature estimates:

- $|\text{Rm}|_{g_i(t)} \leq \frac{C}{t}$.
- (1) (or $(2)) \geq -C$, obtained by a heat kernel method.
Combining these two works, we can generalize both of them to

Let \((M, g)\) be an \(n\) dimensional complete manifold. Suppose \(\text{Vol}_g(B_g(x, 1)) \geq \nu_0\) (non-collapsing) and one of the following curvature is bounded below by \(-1\) (curvature lower bound). Then there exists a Ricci flow \((M, g(t)), t \in [0, T]\) with \(g(0) = g\):

1. 2-non-negative curvature operator \((\Leftrightarrow \text{Ric} \geq 0\text{ in } 3d)\);
2. weakly \(\text{PIC}_1\);

Remark: The non-collapsing assumption cannot be removed, if we only assume a negative lower bound on curvature:
Combining these two works, we can generalize both of them to

Let \((M, g)\) be an \(n\) dimensional complete manifold. Suppose \(\text{Vol}_g(B_g(x, 1)) \geq v_0\) (non-collapsing) and one of the following curvature is bounded below by \(-1\) (curvature lower bound). Then there exists a Ricci flow \((M, g(t)), t \in [0, T]\) with \(g(0) = g:\)

1. 2-non-negative curvature operator \((\Leftrightarrow \text{Ric} \geq 0\ \text{in 3d});\)
2. weakly \(\text{PIC}_1;\)

Remark: The non-collapsing assumption cannot be removed, if we only assume a negative lower bound on curvature:
Combining these two works, we can generalize both of them to

Let \((M, g)\) be an \(n\) dimensional complete manifold. Suppose \(\text{Vol}_g(B_g(x, 1)) \geq \nu_0\) (non-collapsing) and one of the following curvature is bounded below by \(-1\) (curvature lower bound). Then there exists a Ricci flow \((M, g(t)), t \in [0, T]\) with \(g(0) = g\):

1. 2-non-negative curvature operator (\(\Leftrightarrow \text{Ric} \geq 0\) in 3d);
2. weakly \(\text{PIC}_1\);

Remark: The non-collapsing assumption cannot be removed, if we only assume a negative lower bound on curvature:
However, the **non-collapsing** assumption can be removed when assuming **non-negative lower bound** on certain curvatures:

Cabezas-Rivas, Wilking, 2011

In arbitrary dimension, there exists a complete Ricci flow starting from a complete manifold with non-negative complex sectional curvature.

Idea: take \((M_i, p_i) \rightarrow (M, p)\), where \(M_i\) is compact and has non-negative complex sectional curvature. So the same holds for \((M_i, g_i(t)), t \in [0, T_i]\), and \(\lim_{t \uparrow T_i} Vol_t(M_i) = 0\). By Petrunin’s result, \(\int_{B_t(p_i, 1)} R \, dvol \leq C\), it implies \(T_i \geq T\) for all \(i\). Then take a convergent subsequence of \((M_i, g_i(t)), t \in [0, T]\).

Note, in 3d, complex sec \(\geq 0 \Leftrightarrow\) sec \(\geq 0 \Rightarrow\) Ric \(\geq 0\).

Question: is Ric \(\geq 0\) in 3d sufficient to run a Ricci flow?
However, the **non-collapsing** assumption can be removed when assuming **non-negative lower bound** on certain curvatures:

Cabezas-Rivas, Wilking, 2011

In arbitrary dimension, there exists a complete Ricci flow starting from a complete manifold with non-negative complex sectional curvature.

Idea: take \((M_i, p_i) \rightarrow (M, p)\), where \(M_i\) is compact and has non-negative complex sectional curvature. So the same holds for \((M_i, g_i(t)), t \in [0, T_i]\), and \(\lim_{t \uparrow T_i} Vol_t(M_i) = 0\). By Petrunin’s result, \(\int_{B_t(p_i, 1)} R \, dvol \leq C\), it implies \(T_i \geq T\) for all \(i\). Then take a convergent subsequence of \((M_i, g_i(t)), t \in [0, T]\).

Note, in 3d, complex sec \(\geq 0 \Leftrightarrow \sec \geq 0 \Rightarrow \text{Ric} \geq 0\).

Question: is \(\text{Ric} \geq 0\) in 3d sufficient to run a Ricci flow?
However, the **non-collapsing** assumption can be removed when assuming **non-negative lower bound** on certain curvatures:

Cabezas-Rivas, Wilking, 2011

In arbitrary dimension, there exists a complete Ricci flow starting from a complete manifold with non-negative complex sectional curvature.

Idea: take \((M_i, p_i) \rightarrow (M, p)\), where \(M_i\) is compact and has non-negative complex sectional curvature. So the same holds for \((M_i, g_i(t)), t \in [0, T_i]\), and \(\lim_{t \uparrow T_i} Vol_t(M_i) = 0\). By Petrunin’s result, \(\int_{B_t(p_i, 1)} R \, dvol \leq C\), it implies \(T_i \geq T\) for all \(i\). Then take a convergent subsequence of \((M_i, g_i(t)), t \in [0, T]\).

Note, in 3d, complex sec \(\geq 0 \iff \sec \geq 0 \implies \text{Ric} \geq 0\).

Question: is \(\text{Ric} \geq 0\) in 3d sufficient to run a Ricci flow?
Introduction

A conjecture by Topping

Given a 3d complete Riemannian manifold \((M, g)\) with \(\text{Ric} \geq 0\), there is a smooth continuation by Ricci flow.

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold \((M, g)\) with \(\text{Ric} \geq 0\), there is a smooth Ricci flow \((M, g(t)), t \in [0, T_{\max})\), starting out from \((M, g)\). Moreover, if \(T_{\max} < \infty\), then \(\limsup_{t \uparrow T_{\max}} |\text{Rm}|(x, t) = \infty\) for all \(x \in M\).

E.g. \(T_{\max} < \infty\): the standard solution, \(S^2 \times \mathbb{R}\); \(T_{\max} = \infty\): Bryant soliton

Strategy to construct the flow:

- run a generalized singular Ricci flow \(\mathcal{M}\);
- show \(\text{Ric} \geq 0\) holds on \(\mathcal{M}\);
- show that \(\mathcal{M}\) is actually smooth.
Introduction

A conjecture by Topping

Given a 3d complete Riemannian manifold \((M, g)\) with \(\text{Ric} \geq 0\), there is a smooth continuation by Ricci flow.

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold \((M, g)\) with \(\text{Ric} \geq 0\), there is a smooth Ricci flow \((M, g(t)), \, t \in [0, T_{\text{max}})\), starting out from \((M, g)\). Moreover, if \(T_{\text{max}} < \infty\), then \(\limsup_{t \uparrow T_{\text{max}}} |\text{Rm}|(x, t) = \infty\) for all \(x \in M\).

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{max}} < \infty): the standard solution, (S^2 \times \mathbb{R}); (T_{\text{max}} = \infty): Bryant soliton</td>
</tr>
</tbody>
</table>

Strategy to construct the flow:

- run a generalized singular Ricci flow \(\mathcal{M}\);
- show \(\text{Ric} \geq 0\) holds on \(\mathcal{M}\);
- show that \(\mathcal{M}\) is actually smooth.
Introduction

A conjecture by Topping

Given a 3d complete Riemannian manifold \((M, g)\) with \(\text{Ric} \geq 0\), there is a smooth continuation by Ricci flow.

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold \((M, g)\) with \(\text{Ric} \geq 0\), there is a smooth Ricci flow \((M, g(t)), t \in [0, T_{\text{max}}]\), starting out from \((M, g)\). Moreover, if \(T_{\text{max}} < \infty\), then \(\limsup_{t \uparrow T_{\text{max}}} |\text{Rm}|(x, t) = \infty\) for all \(x \in M\).

e.g. \(T_{\text{max}} < \infty\): the standard solution, \(S^2 \times \mathbb{R}\); \(T_{\text{max}} = \infty\): Bryant soliton

Strategy to construct the flow:

- run a generalized singular Ricci flow \(\mathcal{M}\);
- show \(\text{Ric} \geq 0\) holds on \(\mathcal{M}\);
- show that \(\mathcal{M}\) is actually smooth.
Part II Singular Ricci flow
A Ricci flow spacetime \((\mathcal{M}, g(t))\) is the following:

- \(\mathcal{M}\) is a 4-manifold with boundary.
- time function \(t : \mathcal{M} \to [0, T]\), time-t-slice \(\mathcal{M}_t\), and \(\mathcal{M}_0 = \partial \mathcal{M}\).
- \(\partial_t\) is a smooth vector field in \(\mathcal{M}\), \(\partial_t t = 1\).
- \(g\) is a metric on \(\ker(dt)\).
- \(\mathcal{L}_{\partial_t} g = -2Ric(g(t))\).

Canonical neighborhood assumption (CNA): Let \(M\) be a 3d manifold. We say that the \(\epsilon\)-CNA holds at \(x \in M\), if \((M, x)\) is \(\epsilon\)-close to a \(\kappa\)-solution at scale \(R(x)^{-1/2}\).
A Ricci flow spacetime \((\mathcal{M}, g(t))\) is the following:

- \(\mathcal{M}\) is a 4-manifold with boundary.
- time function \(t : \mathcal{M} \rightarrow [0, T)\), time-t-slice \(\mathcal{M}_t\), and \(\mathcal{M}_0 = \partial \mathcal{M}\).
- \(\partial_t\) is a smooth vector field in \(\mathcal{M}\), \(\partial_t t = 1\).
- \(g\) is a metric on \(\ker(dt)\).
- \(\mathcal{L}_{\partial_t} g = -2\text{Ric}(g(t))\).

Canonical neighborhood assumption (CNA): Let \(M\) be a 3d manifold. We say that the \(\epsilon\)-CNA holds at \(x \in M\), if \((M, x)\) is \(\epsilon\)-close to a \(\kappa\)-solution at scale \(R(x)^{-1/2}\).
ϵ-neck: A region that is ϵ-close to $S^2 \times \mathbb{R}$ under rescaling.

Strong ϵ-neck: A spacetime region that is ϵ-close to $(S^2 \times \mathbb{R}, g(t))$ for $t \in [-1, 0]$ under rescaling.

Gradient estimates: If ϵ-CNA holds at x, then

$$|\nabla R^{1/2}|(x) \leq C, \quad |\partial_t R^{-1}|(x) \leq C.$$ \hspace{1cm} (0.2)

We say a Ricci flow spacetime \mathcal{M} is 0-complete (resp. backward 0-complete) if for any smooth curve $\gamma : [0, s_0) \to \mathcal{M}$ that satisfies $\inf_{[0,s_0)} R(\gamma(s)) < \infty$ and one of the following, then $\lim_{s \to s_0} \gamma(s)$ exists:

- $\gamma([0, s_0))$ is contained in a time-slice \mathcal{M}_t, and has finite length with respect to the horizontal metric in \mathcal{M}_t, or
- γ is the integral curve of $-\partial_t$, or ∂_t (resp. only $-\partial_t$).
\(\epsilon\)-neck: A region that is \(\epsilon\)-close to \(S^2 \times \mathbb{R}\) under rescaling.

strong \(\epsilon\)-neck: A spacetime region that is \(\epsilon\)-close to \((S^2 \times \mathbb{R}, g(t))\) for \(t \in [-1, 0]\) under rescaling.

gradient estimates: If \(\epsilon\)-CNA holds at \(x\), then

\[
|\nabla R^{-1/2}|(x) \leq C, \quad |\partial_t R^{-1}|(x) \leq C. \quad (0.2)
\]

We say a Ricci flow spacetime \(\mathcal{M}\) is 0-complete (resp. backward 0-complete) if for any smooth curve \(\gamma : [0, s_0) \to \mathcal{M}\) that satisfies \(\inf_{[0, s_0)} R(\gamma(s)) < \infty\) and one of the following, then \(\lim_{s \to s_0} \gamma(s)\) exists:

- \(\gamma([0, s_0))\) is contained in a time-slice \(\mathcal{M}_t\), and has finite length with respect to the horizontal metric in \(\mathcal{M}_t\), or
- \(\gamma\) is the integral curve of \(-\partial_t\), or \(\partial_t\) (resp. only \(-\partial_t\)).
Singular Ricci flow

ϵ-neck: A region that is ϵ-close to $S^2 \times \mathbb{R}$ under rescaling.

strong ϵ-neck: A spacetime region that is ϵ-close to $(S^2 \times \mathbb{R}, g(t))$ for $t \in [-1,0]$ under rescaling.

gradient estimates: If ϵ-CNA holds at x, then

$$
|\nabla R^{-1/2}(x)| \leq C, \quad |\partial_t R^{-1}|(x) \leq C. \quad (0.2)
$$

We say a Ricci flow spacetime \mathcal{M} is 0-complete (resp. backward 0-complete) if for any smooth curve $\gamma : [0, s_0) \rightarrow \mathcal{M}$ that satisfies

$$
\inf_{[0,s_0)} R(\gamma(s)) < \infty \quad \text{and one of the following, then } \lim_{s \rightarrow s_0} \gamma(s) \text{ exists:}
$$

- $\gamma([0, s_0))$ is contained in a time-slice \mathcal{M}_t, and has finite length with respect to the horizontal metric in \mathcal{M}_t, or
- γ is the integral curve of $-\partial_t$, or ∂_t (resp. only $-\partial_t$).
Singular Ricci flow

Theorem (Kleiner, Lott, 2014)

Let \((M, g)\) be a 3d compact manifold, then there exists a singular Ricci flow starting from \(M\), which is a Ricci flow spacetime that satisfies

- \(\mathcal{M}_0 = M\) is compact;
- \(\mathcal{M}\) is 0-complete;
- For any \(x \in \mathcal{M}\), \(t(x) \leq T\), if \(R(x) \geq r^{-2}(T)\), then the \(\epsilon\)-CNA holds at \(x\).

Theorem: For any \(x_0 \in M\), suppose \(x_0\) survives until \(t_0 > 0\), then

\[
\mathcal{N} := \bigcup_{t=0}^{t_0} \bigcup_{A>0} B_t(x_0(t), A)
\]

is backward 0-complete.
Singular Ricci flow

Theorem (Kleiner, Lott, 2014)

Let \((M, g)\) be a 3d compact manifold, then there exists a **singular Ricci flow** starting from \(M\), which is a Ricci flow spacetime that satisfies

- \(M_0 = M\) is compact;
- \(M\) is 0-complete;
- For any \(x \in M\), \(t(x) \leq T\), if \(R(x) \geq r^{-2}(T)\), then the \(\epsilon\)-CNA holds at \(x\).

Theorem: For any \(x_0 \in M\), suppose \(x_0\) survives until \(t_0 > 0\), then

\[
\mathcal{N} := \bigcup_{t=0}^{t_0} \bigcup_{A>0} B_t(x_0(t), A) \tag{0.3}
\]

is backward 0-complete.
Let $(\mathcal{M}, g(t))$ be a singular Ricci flow with normalized initial condition, $x_0 \in \mathcal{M}$, $t(x_0) = t_0$. Suppose $|Rm| \leq r_0^{-2}$ in $P_0 := P(x_0, t_0, r_0, -r_0^2)$, then

Theorem (Heat kernel)

Then there is a solution $u \geq 0$ to $(-\partial_t - \Delta + R)u = 0$, u is a δ-function at x_0, and $C_m = C_m(r_0)$, such that

$$uR^m \leq C_m \quad \text{in} \quad \mathcal{M}_{t < t_0 - P_0}$$

(0.4)

Step 1 (construct u): Let $\mathcal{M}_i \to \mathcal{M}$ be a sequence of Ricci flow with surgeries. Define u_i on \mathcal{M}_i by integrating with the ordinary heat kernels. Then $u_i \to u$.
Let $(\mathcal{M}, g(t))$ be a singular Ricci flow with normalized initial condition, $x_0 \in \mathcal{M}$, $t(x_0) = t_0$. Suppose $|Rm| \leq r_0^{-2}$ in $\mathcal{P}_0 := P(x_0, t_0, r_0, -r_0^2)$, then

Theorem (Heat kernel)

Then there is a solution $u \geq 0$ to $(-\partial_t - \Delta + R)u = 0$, u is a δ-function at x_0, and $C_m = C_m(r_0)$, such that

$$uR^m \leq C_m \quad \text{in} \quad \mathcal{M}_{t < t_0} - \mathcal{P}_0 \quad (0.4)$$

Step 1 (construct u): Let $\mathcal{M}_i \to \mathcal{M}$ be a sequence of Ricci flow with surgeries. Define u_i on \mathcal{M}_i by integrating with the ordinary heat kernels. Then $u_i \to u$.
Singular Ricci flow

Let \((\mathcal{M}, g(t))\) be a singular Ricci flow with normalized initial condition, \(x_0 \in \mathcal{M}, t(x_0) = t_0\). Suppose \(|Rm| \leq r_0^{-2}\) in \(\mathcal{P}_0 := P(x_0, t_0, r_0, -r_0^2)\), then

Theorem (Heat kernel)

Then there is a solution \(u \geq 0\) to \((-\partial_t - \Delta + R)u = 0\), \(u\) is a \(\delta\)-function at \(x_0\), and \(C_m = C_m(r_0)\), such that

\[
u R^m \leq C_m \quad \text{in} \quad \mathcal{M}_{t < t_0} - \mathcal{P}_0
\] \hspace{1cm} (0.4)

Step 1 (construct \(u\)): Let \(\mathcal{M}_i \rightarrow \mathcal{M}\) be a sequence of Ricci flow with surgeries. Define \(u_i\) on \(\mathcal{M}_i\) by integrating with the ordinary heat kernels. Then \(u_i \rightarrow u\).
Step 2 (a vanishing theorem): Studying the solution $u \geq 0$ to
$(-\partial_t - \Delta + R)u = 0$ in a non-compact κ-solution on $[0, T_{\text{max}})$.

For example, in a Bryant soliton: If $uR^m \leq C$, then $u \equiv 0$.

Step 3 (a semi-local maximum principle): For any x_1 with sufficiently large R, there is x_2 with $t(x_2) \geq t(x_1)$ such that

$$\begin{cases}
 uR^m(x_2) \geq (1 + \epsilon_m)uR^m(x_1), \\
 u(x_2) \geq (1 + \epsilon_m)u(x_1).
\end{cases} \quad (0.5)$$

Prove (0.5) by a limiting argument: Suppose it is violated in a sequence
(M_i, x_i, u_i), with $R(x_i) \to \infty$. Then rescale each flow by $R(x_i)$, and rescale u_i such that $u_i(x_i) = 1$. Then

$$(M_i, x_i, u_i) \to (g_\infty(t), x_\infty, u_\infty), \quad (0.6)$$

where $g_\infty(t)$ is a non-compact κ-solution defined on $[0, T_{\text{max}})$. By step 2 we get a contradiction. Prove the theorem by using (0.5) repeatedly.
Singular Ricci flow

Step 2 (a vanishing theorem): Studying the solution $u \geq 0$ to $(-\partial_t - \Delta + R)u = 0$ in a non-compact κ-solution on $[0, T_{\text{max}})$.

For example, in a Bryant soliton: If $uR^m \leq C$, then $u \equiv 0$.

Step 3 (a semi-local maximum principle): For any x_1 with sufficiently large R, there is x_2 with $t(x_2) \geq t(x_1)$ such that

\[
\begin{cases}
 uR^m(x_2) \geq (1 + \epsilon_m)uR^m(x_1), \\
 u(x_2) \geq (1 + \epsilon_m)u(x_1).
\end{cases}
\]

(0.5)

Prove (0.5) by a limiting argument: Suppose it is violated in a sequence $(\mathcal{M}_i, x_i, u_i)$, with $R(x_i) \to \infty$. Then rescale each flow by $R(x_i)$, and rescale u_i such that $u_i(x_i) = 1$. Then

\[
(\mathcal{M}_i, x_i, u_i) \to (g_\infty(t), x_\infty, u_\infty),
\]

(0.6)

where $g_\infty(t)$ is a non-compact κ-solution defined on $[0, T_{\text{max}})$. By step 2 we get a contradiction. Prove the theorem by using (0.5) repeatedly.
Step 2 (a vanishing theorem): Studying the solution \(u \geq 0 \) to
\[(-\partial_t - \Delta + R)u = 0 \]
in a non-compact \(\kappa \)-solution on \([0, T_{\text{max}})\).

For example, in a Bryant soliton: If \(uR^m \leq C \), then \(u \equiv 0 \).

Step 3 (a semi-local maximum principle): For any \(x_1 \) with sufficiently large \(R \), there is \(x_2 \) with \(t(x_2) \geq t(x_1) \) such that

\[
\begin{align*}
 uR^m(x_2) &\geq (1 + \epsilon_m)uR^m(x_1), \\
 u(x_2) &\geq (1 + \epsilon_m)u(x_1).
\end{align*}
\] (0.5)

Prove (0.5) by a limiting argument: Suppose it is violated in a sequence
\((M_i, x_i, u_i)\), with \(R(x_i) \to \infty \). Then rescale each flow by \(R(x_i) \), and rescale \(u_i \) such that \(u_i(x_i) = 1 \). Then

\[
(M_i, x_i, u_i) \to (g_\infty(t), x_\infty, u_\infty),
\] (0.6)

where \(g_\infty(t) \) is a non-compact \(\kappa \)-solution defined on \([0, T_{\text{max}})\). By step 2 we get a contradiction. Prove the theorem by using (0.5) repeatedly.
Corollary: $\int_{\mathcal{M}_t} u \, d_t \text{vol} = 1$ for all $t \in [0, t_0)$.

Corollary: Pseudolocality theorem for singular Ricci flows.

Canonical neighborhood theorem

Let (\mathcal{M}, g, x_0) be a singular Ricci flow, $x_0 \in \mathcal{M}_0$. Suppose $|\text{Rm}| \leq 1$ and $\text{vol}(B_1(x_0, 1)) \geq A^{-1}$ on $P(x_0, 0; 1, 1)$. Then there exists $r(A) > 0$ such that the ϵ-CNA holds in $B_1(x_0, A)$ at scales less than $r(A)$.

Remark: Unlike the case of Ricci flow with surgeries, there is no need to assume that the initial condition of \mathcal{M} is normalized, thanks to the 'zero-surgery scale' of the singular Ricci flow.
Corollary: \(\int_{\mathcal{M}_t} u \, dt \, vol = 1 \) for all \(t \in [0, t_0) \).

Corollary: Pseudolocality theorem for singular Ricci flows.

Canonical neighborhood theorem

Let \((\mathcal{M}, g, x_0)\) be a singular Ricci flow, \(x_0 \in \mathcal{M}_0\). Suppose \(|Rm| \leq 1\) and \(vol(B_1(x_0, 1)) \geq A^{-1}\) on \(P(x_0, 0; 1, 1)\). Then there exists \(r(A) > 0\) such that the \(\epsilon\)-CNA holds in \(B_1(x_0, A)\) at scales less than \(r(A)\).

Remark: Unlike the case of Ricci flow with surgeries, there is no need to assume that the initial condition of \(\mathcal{M}\) is normalized, thanks to the 'zero-surgery scale' of the singular Ricci flow.
Corollary: \(\int_{\mathcal{M}_t} u \, d_t \text{vol} = 1 \) for all \(t \in [0, t_0) \).

Corollary: Pseudolocality theorem for singular Ricci flows.

Canonical neighborhood theorem

Let \((\mathcal{M}, g, x_0) \) be a singular Ricci flow, \(x_0 \in \mathcal{M}_0 \). Suppose \(|Rm| \leq 1 \) and \(\text{vol}(B_1(x_0, 1)) \geq A^{-1} \) on \(P(x_0, 0; 1, 1) \). Then there exists \(r(A) > 0 \) such that the \(\epsilon \)-CNA holds in \(B_1(x_0, A) \) at scales less than \(r(A) \).

Remark: Unlike the case of Ricci flow with surgeries, there is no need to assume that the initial condition of \(\mathcal{M} \) is normalized, thanks to the 'zero-surgery scale' of the singular Ricci flow.
Corollary: \(\int_{\mathcal{M}_t} u \, dt \, \text{vol} = 1 \) for all \(t \in [0, t_0) \).

Corollary: Pseudolocality theorem for singular Ricci flows.

Canonical neighborhood theorem

Let \((\mathcal{M}, g, x_0)\) be a singular Ricci flow, \(x_0 \in \mathcal{M}_0 \). Suppose \(|\text{Rm}| \leq 1\) and \(\text{vol}(B_1(x_0, 1)) \geq A^{-1} \) on \(P(x_0, 0; 1, 1) \). Then there exists \(r(A) > 0 \) such that the \(\epsilon \)-CNA holds in \(B_1(x_0, A) \) at scales less than \(r(A) \).

Remark: Unlike the case of Ricci flow with surgeries, there is no need to assume that the initial condition of \(\mathcal{M} \) is normalized, thanks to the 'zero-surgery scale' of the singular Ricci flow.
Part III Generalized singular Ricci flow
Theorem (L, 2020)

Let \((M, g)\) be a 3d complete manifold (with possibly unbounded curvature). Then there exists a \textbf{generalized singular Ricci flow} \(\mathcal{M}\) starting from \((M, g)\), which is a Ricci flow spacetime that satisfies:

- \(\mathcal{M}_0 = M\) is complete;
- \(\mathcal{M}\) is 0-complete;
- For any fixed \(x_0 \in \mathcal{M}\), \(t(x_0) = t_0\), \(\epsilon\)-CNA holds on \(B_{t_0}(x_0, A)\) at scales \((0, r(A))\).
Proof of the Theorem:

Pick \(x_0 \in M \), and a sequence of compact manifolds

\[
(M_i, x_{0i}) \longrightarrow (M, x_0).
\]

(0.7)

Let \(M_i \) be singular Ricci flows with \(M_{i,0} = M_i \).

By the pseudolocality theorem,
\[
x \in B_t(x_{0i}, A), \ t \in [0, t(A)] \Rightarrow |Rm|(x) \leq C(A).
\]

Take \(T = t(10) \). By the canonical neighborhood theorem,
\[
x \in B_t(x_{0i}, A), \ t \in [t(A), T] \Rightarrow \epsilon\text{-CNA holds if } |Rm| \geq r(A)^{-2}.
\]

In summary, by decreasing \(r(A) \), we have
\[
x \in B_t(x_{0i}, A), \ t \in [0, T] \Rightarrow \epsilon\text{-CNA holds if } |Rm| \geq r(A)^{-2}.
\]

Therefore, for any fixed \(A \), \(B_t(x_{0i}, A) \) is uniformly totally bounded.
Proof of the Theorem:

Pick $x_0 \in M$, and a sequence of compact manifolds

$$ (M_i, x_{0i}) \longrightarrow (M, x_0). \quad (0.7) $$

Let \mathcal{M}_i be singular Ricci flows with $\mathcal{M}_{i,0} = M_i$.

By the pseudolocality theorem,

$$ x \in B_t(x_{0i}, A), \; t \in [0, t(A)] \Rightarrow |\text{Rm}(x)| \leq C(A). $$

Take $T = t(10)$. By the canonical neighborhood theorem,

$$ x \in B_t(x_{0i}, A), \; t \in [t(A), T] \Rightarrow \epsilon\text{-CNA holds if } |\text{Rm}| \geq r(A)^{-2}. $$

In summary, by decreasing $r(A)$, we have

$$ x \in B_t(x_{0i}, A), \; t \in [0, T] \Rightarrow \epsilon\text{-CNA holds if } |\text{Rm}| \geq r(A)^{-2}. $$

Therefore, for any fixed A, $B_t(x_{0i}, A)$ is uniformly totally bounded.
Proof of the Theorem:

Pick \(x_0 \in M \), and a sequence of compact manifolds

\[
(M_i, x_{0i}) \longrightarrow (M, x_0).
\] (0.7)

Let \(\mathcal{M}_i \) be singular Ricci flows with \(\mathcal{M}_{i,0} = M_i \).

By the pseudolocality theorem,

\[
x \in B_t(x_{0i}, A), \ t \in [0, t(A)] \Rightarrow |Rm|(x) \leq C(A).
\]

Take \(T = t(10) \). By the canonical neighborhood theorem,

\[
x \in B_t(x_{0i}, A), \ t \in [t(A), T] \Rightarrow \epsilon\text{-CNA holds if } |Rm| \geq r(A)^{-2}.
\]

In summary, by decreasing \(r(A) \), we have

\[
x \in B_t(x_{0i}, A), \ t \in [0, T] \Rightarrow \epsilon\text{-CNA holds if } |Rm| \geq r(A)^{-2}.
\]

Therefore, for any fixed \(A, B_t(x_{0i}, A) \) is uniformly totally bounded.
Proof of the Theorem:

Pick $x_0 \in M$, and a sequence of compact manifolds

$$(M_i, x_{0i}) \rightarrow (M, x_0).$$

(0.7)

Let M_i be singular Ricci flows with $M_{i,0} = M_i$.

By the pseudolocality theorem,

$x \in B_t(x_{0i}, A), \ t \in [0, t(A)] \Rightarrow |Rm|(x) \leq C(A)$.

Take $T = t(10)$. By the canonical neighborhood theorem,

$x \in B_t(x_{0i}, A), \ t \in [t(A), T] \Rightarrow \epsilon$-CNA holds if $|Rm| \geq r(A)^{-2}$.

In summary, by decreasing $r(A)$, we have

$x \in B_t(x_{0i}, A), \ t \in [0, T] \Rightarrow \epsilon$-CNA holds if $|Rm| \geq r(A)^{-2}$.

Therefore, for any fixed A, $B_t(x_{0i}, A)$ is uniformly totally bounded.
Proof of the Theorem:

Pick $x_0 \in M$, and a sequence of compact manifolds

$$\left(M_i, x_{0,i} \right) \longrightarrow (M, x_0).$$ \hfill (0.7)

Let M_i be singular Ricci flows with $M_{i,0} = M_i$.

By the pseudolocality theorem,

$x \in B_t(x_{0,i}, A), \ t \in [0, t(A)] \Rightarrow |Rm|(x) \leq C(A)$.

Take $T = t(10)$. By the canonical neighborhood theorem,

$x \in B_t(x_{0,i}, A), \ t \in [t(A), T] \Rightarrow \epsilon\text{-CNA holds if } |Rm| \geq r(A)^{-2}$.

In summary, by decreasing $r(A)$, we have

$x \in B_t(x_{0,i}, A), \ t \in [0, T] \Rightarrow \epsilon\text{-CNA holds if } |Rm| \geq r(A)^{-2}$.

Therefore, for any fixed A, $B_t(x_{0,i}, A)$ is uniformly totally bounded.
Let \(G_i = dt^2 + g_i(t) \), and \(d_i \) be the metric induced by \(G_i \).

Let \(P_i(A) := \bigcup_{t \in [0, T)} B_t(x_{0i}, A) \). Then \((P_i(A), d_i)\) is uniformly totally bounded. So

\[
(P_i(A), d_i) \xrightarrow{GH} (X(A), d_A). \tag{0.8}
\]

Let \(\mathcal{N}_i = \bigcup_{A > 0} P_i(A) \), then

\[
(\mathcal{N}_i, d_i, x_{0i}) \xrightarrow{pGH} (X, d, x_0). \tag{0.9}
\]

Let \(\mathcal{M} = \{\text{‘smooth points’ in } X\} \). By the gradient estimate, there is a smooth spacetime metric on \(\mathcal{M} \), \(t(\mathcal{M}) = [0, T) \), and

\[
(\mathcal{N}_i, g_i(t), x_{0i}) \xrightarrow{\text{smoothly}} (\mathcal{M}, x_0). \tag{0.10}
\]
Generalized singular Ricci flow

Let $G_i = dt^2 + g_i(t)$, and d_i be the metric induced by G_i.

Let $P_i(A) := \bigcup_{t \in [0, T)} B_t(x_{0i}, A)$. Then $(P_i(A), d_i)$ is uniformly totally bounded. So

$$(P_i(A), d_i) \xrightarrow{GH} (X(A), d_A). \quad (0.8)$$

Let $\mathcal{N}_i = \bigcup_{A > 0} P_i(A)$, then

$$(\mathcal{N}_i, d_i, x_{0i}) \xrightarrow{pGH} (X, d, x_0). \quad (0.9)$$

Let $\mathcal{M} = \{\text{`smooth points' in } X\}$. By the gradient estimate, there is a smooth spacetime metric on \mathcal{M}, $t(\mathcal{M}) = [0, T)$, and

$$(\mathcal{N}_i, g_i(t), x_{0i}) \xrightarrow{\text{smoothly}} (\mathcal{M}, x_0). \quad (0.10)$$
Let \(G_i = dt^2 + g_i(t) \), and \(d_i \) be the metric induced by \(G_i \).

Let \(P_i(A) := \bigcup_{t \in [0, T)} B_t(x_{0i}, A) \). Then \((P_i(A), d_i)\) is uniformly totally bounded. So

\[
(P_i(A), d_i) \xrightarrow{GH} (X(A), d_A).
\] \hspace{1cm} (0.8)

Let \(\mathcal{N}_i = \bigcup_{A > 0} P_i(A) \), then

\[
(\mathcal{N}_i, d_i, x_{0i}) \xrightarrow{pGH} (X, d, x_0).
\] \hspace{1cm} (0.9)

Let \(\mathcal{M} = \{ \text{‘smooth points’ in } X \} \). By the gradient estimate, there is a smooth spacetime metric on \(\mathcal{M} \), \(t(M) = [0, T) \), and

\[
(\mathcal{N}_i, g_i(t), x_{0i}) \xrightarrow{\text{smoothly}} (\mathcal{M}, x_0).
\] \hspace{1cm} (0.10)
Generalized singular Ricci flow

Let $G_i = dt^2 + g_i(t)$, and d_i be the metric induced by G_i.

Let $P_i(A) := \bigcup_{t \in [0,T)} B_t(x_{0i}, A)$. Then $(P_i(A), d_i)$ is uniformly totally bounded. So

$$(P_i(A), d_i) \xrightarrow{GH} (X(A), d_A). \quad (0.8)$$

Let $\mathcal{N}_i = \bigcup_{A > 0} P_i(A)$, then

$$(\mathcal{N}_i, d_i, x_{0i}) \xrightarrow{pGH} (X, d, x_0). \quad (0.9)$$

Let $\mathcal{M} = \{ 'smooth points' \text{ in } X \}$. By the gradient estimate, there is a smooth spacetime metric on \mathcal{M}, $t(\mathcal{M}) = [0, T)$, and

$$(\mathcal{N}_i, g_i(t), x_{0i}) \xrightarrow{smoothly} (\mathcal{M}, x_0). \quad (0.10)$$
By taking T maximal, we can assume that x_0 survives until its curvature blows up.

Moreover, we can show that (\mathcal{M}, x_0) is backward 0-complete. By taking a 'union' of all such (\mathcal{M}, x_0) we get a generalized singular Ricci flow.
Generalized singular Ricci flow

By taking T maximal, we can assume that x_0 survives until its curvature blows up.

Moreover, we can show that (\mathcal{M}, x_0) is backward 0-complete. By taking a 'union' of all such (\mathcal{M}, x_0) we get a generalized singular Ricci flow.
By taking T maximal, we can assume that x_0 survives until its curvature blows up.

Moreover, we can show that (M, x_0) is backward 0-complete. By taking a 'union' of all such (M, x_0) we get a generalized singular Ricci flow.
By taking T maximal, we can assume that x_0 survives until its curvature blows up.

Moreover, we can show that (\mathcal{M}, x_0) is backward 0-complete. By taking a 'union' of all such (\mathcal{M}, x_0) we get a generalized singular Ricci flow.
Part IV Proof of the main theorem
Proof of the main theorem

Lemma

Let \((M, g)\) be a complete 3-manifold with \(\text{Ric} \geq 0\) (resp. \(R \geq 0\)). Let \(\mathcal{M}\) be a generalized singular Ricci flow starting from \((M, g)\). Then \(\text{Ric} \geq 0\) (resp. \(R \geq 0\)) on \(\mathcal{M}\).

To show \(R \geq 0\) is preserved, note

- In each \(\mathcal{M}_t\), \(R\) is positive in the high curvature regions. So \(R_{\min} < 0\) is achieved at some point.
- \(\bigcup_{t \in [0, T)} \bigcup_{A > 0} B_t(x_0(t), A)\) is backward 0-complete. It guarantees

\[
\liminf_{t \searrow t_0} R_{\min}(t) \geq R_{\min}(t_0). \tag{0.11}
\]

Then apply maximum principle.

We can show \(\text{Ric} \geq 0\) in a similar way.
Proof of the main theorem

Lemma

Let \((M, g)\) be a complete 3-manifold with \(\text{Ric} \geq 0\) (resp. \(R \geq 0\)). Let \(\mathcal{M}\) be a generalized singular Ricci flow starting from \((M, g)\). Then \(\text{Ric} \geq 0\) (resp. \(R \geq 0\)) on \(\mathcal{M}\).

To show \(R \geq 0\) is preserved, note

- In each \(\mathcal{M}_t\), \(R\) is positive in the high curvature regions. So \(R_{\min} < 0\) is achieved at some point.
- \(\bigcup_{t \in [0, T)} \bigcup_{A > 0} B_t(x_0(t), A)\) is backward 0-complete. It guarantees

\[
\liminf_{t \searrow t_0} R_{\min}(t) \geq R_{\min}(t_0). \tag{0.11}
\]

Then apply maximum principle.

We can show \(\text{Ric} \geq 0\) in a similar way.
Proof of the main theorem

Lemma

Let \((M, g)\) be a complete 3-manifold with \(\text{Ric} \geq 0\) (resp. \(R \geq 0\)). Let \(\mathcal{M}\) be a generalized singular Ricci flow starting from \((M, g)\). Then \(\text{Ric} \geq 0\) (resp. \(R \geq 0\)) on \(\mathcal{M}\).

To show \(R \geq 0\) is preserved, note

- In each \(\mathcal{M}_t\), \(R\) is positive in the high curvature regions. So \(R_{\min} < 0\) is achieved at some point.
- \(\bigcup_{t \in [0, T)} \bigcup_{A > 0} B_t(x_0(t), A)\) is backward 0-complete. It guarantees
 \[
 \liminf_{t \searrow t_0} R_{\min}(t) \geq R_{\min}(t_0). \tag{0.11}
 \]

Then apply maximum principle.

We can show \(\text{Ric} \geq 0\) in a similar way.
Proof of the main theorem

Main theorem (L, 2020)
Given a 3d complete Riemannian manifold \((M, g)\) with \(\text{Ric} \geq 0\), there is a smooth Ricci flow \((M, g(t)), t \in [0, T_{\text{max}}]\), starting out from \((M, g)\). Moreover, if \(T_{\text{max}} < \infty\), then \(\limsup_{t \uparrow T_{\text{max}}} |\text{Rm}|(x, t) = \infty\) for all \(x \in M\).

Proof: Let \((M, g(t))\) be a generalized singular Ricci flow starting from \(M\). Let \(x_0 \in M\). Suppose \(x_0\) survives until \(T > 0\). We claim that \(M_t\) is complete for all \(t \in [0, T]\).

Suppose not, then for some \(t, A > 0\) there is a minimizing geodesic \(\gamma : [0, 1) \to B_t(x_0, A)\) such that \(\lim_{s \to 1} R(\gamma(s)) = \infty\), and \(\gamma(s)\) is center of strong \(\epsilon\)-necks for all \(s\) close to 1.
Proof of the main theorem

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold \((M, g)\) with \(\text{Ric} \geq 0\), there is a smooth Ricci flow \((M, g(t))\), \(t \in [0, T_{\text{max}})\), starting out from \((M, g)\). Moreover, if \(T_{\text{max}} < \infty\), then \(\limsup_{t \uparrow T_{\text{max}}} |\text{Rm}|(x, t) = \infty\) for all \(x \in M\).

Proof: Let \((\mathcal{M}, g(t))\) be a generalized singular Ricci flow starting from \(M\). Let \(x_0 \in M\). Suppose \(x_0\) survives until \(T > 0\). We claim that \(\mathcal{M}_t\) is complete for all \(t \in [0, T]\).

Suppose not, then for some \(t, A > 0\) there is a minimizing geodesic \(\gamma : [0, 1) \to B_t(x_0, A)\) such that \(\lim_{s \to 1} R(\gamma(s)) = \infty\), and \(\gamma(s)\) is center of strong \(\epsilon\)-necks for all \(s\) close to 1.
Proof of the main theorem

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold \((M, g)\) with \(\text{Ric} \geq 0\), there is a smooth Ricci flow \((M, g(t))\), \(t \in [0, T_{\text{max}})\), starting out from \((M, g)\). Moreover, if \(T_{\text{max}} < \infty\), then \(\limsup_{t \uparrow T_{\text{max}}} |\text{Rm}|(x, t) = \infty\) for all \(x \in M\).

Proof: Let \((\mathcal{M}, g(t))\) be a generalized singular Ricci flow starting from \(M\). Let \(x_0 \in M\). Suppose \(x_0\) survives until \(T > 0\). We claim that \(\mathcal{M}_t\) is complete for all \(t \in [0, T]\).

Suppose not, then for some \(t, A > 0\) there is a minimizing geodesic \(\gamma : [0, 1) \rightarrow B_t(x_0, A)\) such that \(\lim_{s \rightarrow 1} R(\gamma(s)) = \infty\), and \(\gamma(s)\) is center of strong \(\epsilon\)-necks for all \(s\) close to 1.
Proof of the main theorem

Let $X = \{p\} \cup B_t(x_0, A)$ be the one-point completion, and take a blow-up limit of X at p,

$$\lambda X \xrightarrow{GH} X_\infty, \text{ as } \lambda \to \infty. \quad (0.12)$$

Then by $\text{Ric} \geq 0$, we can show X_∞ is a smooth cone.

Since for any $x \in X_\infty$, x is the center of a strong 2ϵ-neck, X_∞ is flat. However, by the gradient estimate on X,

$$|\nabla R^{-\frac{1}{2}}| \leq C \Rightarrow R^{-\frac{1}{2}}(x) \leq C d(x, p). \quad (0.13)$$

So X_∞ is not flat, a contradiction. So M_t is complete for all $t \in [0, T]$.

Since $\text{Ric} \geq 0$, we have $d_t(x, x_0) \leq d_0(x, x_0)$ for any $x \in M$. So M survives until T, and $M \times [0, T] \subset M$ is a smooth Ricci flow.
Proof of the main theorem

Let \(X = \{p\} \cup B_t(x_0, A) \) be the one-point completion, and take a blow-up limit of \(X \) at \(p \),

\[
\lambda X \xrightarrow{GH} X_\infty, \text{ as } \lambda \to \infty.
\] \hspace{1cm} (0.12)

Then by Ric \(\geq 0 \), we can show \(X_\infty \) is a smooth cone.

Since for any \(x \in X_\infty \), \(x \) is the center of a strong \(2\epsilon \)-neck, \(X_\infty \) is flat.

However, by the gradient estimate on \(X \),

\[
|\nabla R^{-\frac{1}{2}}| \leq C \Rightarrow R^{-\frac{1}{2}}(x) \leq C \, d(x, p).
\] \hspace{1cm} (0.13)

So \(X_\infty \) is not flat, a contradiction. So \(M_t \) is complete for all \(t \in [0, T] \).

Since Ric \(\geq 0 \), we have \(d_t(x, x_0) \leq d_0(x, x_0) \) for any \(x \in M \). So \(M \) survives until \(T \), and \(M \times [0, T] \subset M \) is a smooth Ricci flow.
Proof of the main theorem

Let $X = \{p\} \cup B_t(x_0, A)$ be the one-point completion, and take a blow-up limit of X at p,

$$\lambda X \xrightarrow{GH} X_\infty, \text{ as } \lambda \to \infty. \quad (0.12)$$

Then by $\text{Ric} \geq 0$, we can show X_∞ is a smooth cone.

Since for any $x \in X_\infty$, x is the center of a strong 2ϵ-neck, X_∞ is flat.

However, by the gradient estimate on X,

$$|\nabla R^{-\frac{1}{2}}| \leq C \Rightarrow R^{-\frac{1}{2}}(x) \leq C \, d(x, p). \quad (0.13)$$

So X_∞ is not flat, a contradiction. So M_t is complete for all $t \in [0, T]$.

Since $\text{Ric} \geq 0$, we have $d_t(x, x_0) \leq d_0(x, x_0)$ for any $x \in M$. So M survives until T, and $M \times [0, T] \subset M$ is a smooth Ricci flow.
Proof of the main theorem

Let $X = \{p\} \cup B_t(x_0, A)$ be the one-point completion, and take a blow-up limit of X at p,

$$\lambda X \xrightarrow{GH} X_\infty, \text{ as } \lambda \to \infty.$$ \hfill (0.12)

Then by $\text{Ric} \geq 0$, we can show X_∞ is a smooth cone.

Since for any $x \in X_\infty$, x is the center of a strong 2ε-neck, X_∞ is flat.

However, by the gradient estimate on X,

$$|\nabla R^{-\frac{1}{2}}| \leq C \Rightarrow R^{-\frac{1}{2}}(x) \leq C d(x, p).$$ \hfill (0.13)

So X_∞ is not flat, a contradiction. So M_t is complete for all $t \in [0, T]$.

Since $\text{Ric} \geq 0$, we have $d_t(x, x_0) \leq d_0(x, x_0)$ for any $x \in M$. So M survives until T, and $M \times [0, T] \subset M$ is a smooth Ricci flow.
Proof of the main theorem

Let $X = \{p\} \cup B_t(x_0, A)$ be the one-point completion, and take a blow-up limit of X at p,

$$\lambda X \xrightarrow{GH} X_\infty, \text{ as } \lambda \to \infty.$$ \hspace{1cm} (0.12)

Then by $\text{Ric} \geq 0$, we can show X_∞ is a smooth cone.

Since for any $x \in X_\infty$, x is the center of a strong 2ϵ-neck, X_∞ is flat.

However, by the gradient estimate on X,

$$|\nabla R^{-\frac{1}{2}}| \leq C \Rightarrow R^{-\frac{1}{2}}(x) \leq C d(x, p).$$ \hspace{1cm} (0.13)

So X_∞ is not flat, a contradiction. So M_t is complete for all $t \in [0, T]$.

Since $\text{Ric} \geq 0$, we have $d_t(x, x_0) \leq d_0(x, x_0)$ for any $x \in M$. So M survives until T, and $M \times [0, T] \subset M$ is a smooth Ricci flow.
Thanks for your listening!