

Crossing the transcendental divide: from translation surfaces to algebraic curves

Yelena Mandelshtam

University of California, Berkeley

December 6, 2022

Work featured

- Crossing the transcendental divide: from translation surfaces to algebraic curves with Türkü Özlüm Çelik and Samantha Fairchild (arxiv 2211.00304)
 - Code can be found at https://mathrepo.mis.mpg.de/Tsurfaces2Acurves

Riemann Surfaces, analytic and algebraic

Definition

A Riemann surface is a one dimensional complex manifold.

Riemann Surfaces, analytic and algebraic

Definition

A Riemann surface is a one dimensional complex manifold.

• A compact Riemann surface is a complex smooth algebraic curve (known from the time of Riemann)

Riemann Surfaces, analytic and algebraic

Definition

A Riemann surface is a one dimensional complex manifold.

• A compact Riemann surface is a complex smooth algebraic curve (known from the time of Riemann)

Definition

Given a genus g surface X with homology basis $\alpha_1, \ldots, \alpha_g$ and β_1, \ldots, β_g . Let $\omega_1, \ldots, \omega_g$ be a basis of the space of differential forms on X. Then the *period matrix* of X is

$$\left(\begin{array}{ccccccccc} \int_{\alpha_1}\omega_1 & \dots & \int_{\alpha_g}\omega_1 & \int_{\beta_1}\omega_1 & \dots & \int_{\beta_g}\omega_1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \int_{\alpha_1}\omega_g & \dots & \int_{\alpha_g}\omega_g & \int_{\beta_1}\omega_g & \dots & \int_{\beta_g}\omega_g \end{array}\right)$$

Riemann matrices and theta functions

Definition

If the period matrix of X is $(\tau_1|\tau_2) := \left(\left(\int_{\alpha_i} \omega_j \right) \middle| \left(\int_{\beta_i} \omega_j \right) \right)$, the matrix $\tau := \tau_1^{-1} \tau_2$ is called a *Riemann matrix* of X.

• $g \times g$ symmetric matrix with positive definite imaginary part, lies in the Siegel upper half space \mathbb{H}_g

Riemann matrices and theta functions

Definition

If the period matrix of X is $(\tau_1|\tau_2) := \left(\left(\int_{\alpha_i} \omega_j \right) \middle| \left(\int_{\beta_i} \omega_j \right) \right)$, the matrix $\tau := \tau_1^{-1} \tau_2$ is called a *Riemann matrix* of X.

• $g \times g$ symmetric matrix with positive definite imaginary part, lies in the Siegel upper half space \mathbb{H}_g

Definition

The theta function with characteristic $\varepsilon, \delta \in \{0, 1\}^g$ is a complex-valued function defined on $\mathbb{C}^g \times \mathbb{H}_g$:

$$\theta \begin{bmatrix} \varepsilon \\ \delta \end{bmatrix} (\mathbf{z} | \tau) = \sum_{\mathbf{n} \in \mathbb{Z}^g} \exp\left(\pi i \left(\mathbf{n} + \frac{\varepsilon}{2}\right)^T \tau \left(\mathbf{n} + \frac{\varepsilon}{2}\right) + \left(\mathbf{n} + \frac{\varepsilon}{2}\right)^T \left(\mathbf{z} + \frac{\delta}{2}\right)\right).$$

Riemann matrices and theta functions

Definition

If the period matrix of X is $(\tau_1|\tau_2) := \left(\left(\int_{\alpha_i} \omega_j \right) \middle| \left(\int_{\beta_i} \omega_j \right) \right)$, the matrix $\tau := \tau_1^{-1} \tau_2$ is called a *Riemann matrix* of X.

• $g \times g$ symmetric matrix with positive definite imaginary part, lies in the Siegel upper half space \mathbb{H}_g

Definition

The theta function with characteristic $\varepsilon, \delta \in \{0, 1\}^g$ is a complex-valued function defined on $\mathbb{C}^g \times \mathbb{H}_g$:

$$\theta \begin{bmatrix} \varepsilon \\ \delta \end{bmatrix} (\mathbf{z} \mid \tau) = \sum_{\mathbf{n} \in \mathbb{Z}^g} \exp\left(\pi i \left(\mathbf{n} + \frac{\varepsilon}{2}\right)^T \tau \left(\mathbf{n} + \frac{\varepsilon}{2}\right) + \left(\mathbf{n} + \frac{\varepsilon}{2}\right)^T \left(\mathbf{z} + \frac{\delta}{2}\right)\right).$$

When $\varepsilon = \delta = 0$, this is the *Riemann theta function*

Definition

For fixed τ , the values $\theta \begin{bmatrix} \varepsilon \\ \delta \end{bmatrix} (\mathbf{0} | \tau)$ are known as *theta constants*. If $\varepsilon \cdot \delta \equiv 0, 1 \pmod{2}$ these are even, odd.

Definition

For fixed τ , the values $\theta \begin{bmatrix} \varepsilon \\ \delta \end{bmatrix} (\mathbf{0} | \tau)$ are known as *theta constants*. If $\varepsilon \cdot \delta \equiv 0, 1 \pmod{2}$ these are even, odd.

Theta functions and theta constants play an important role in the

Schottky problem

Definition

For fixed τ , the values $\theta \begin{bmatrix} \varepsilon \\ \delta \end{bmatrix} (\mathbf{0} | \tau)$ are known as *theta constants*. If $\varepsilon \cdot \delta \equiv 0, 1 \pmod{2}$ these are even, odd.

Theta functions and theta constants play an important role in the

Schottky problem

Which matrices in \mathbb{H}_g are a Riemann matrix for some curve?

• When $g \leq 3$, the Schottky locus is \mathbb{H}_g

Definition

For fixed τ , the values $\theta \begin{bmatrix} \varepsilon \\ \delta \end{bmatrix} (\mathbf{0} | \tau)$ are known as *theta constants*. If $\varepsilon \cdot \delta \equiv 0, 1 \pmod{2}$ these are even, odd.

Theta functions and theta constants play an important role in the

Schottky problem

- When $g \leq 3$, the Schottky locus is \mathbb{H}_g
- When g = 4 the Igusa modular form defines an analytic hypersurface (the Schottky locus) in terms of theta functions

Definition

For fixed τ , the values $\theta \begin{bmatrix} \varepsilon \\ \delta \end{bmatrix} (\mathbf{0} | \tau)$ are known as *theta constants*. If $\varepsilon \cdot \delta \equiv 0, 1 \pmod{2}$ these are even, odd.

Theta functions and theta constants play an important role in the

Schottky problem

- When $g \leq 3$, the Schottky locus is \mathbb{H}_g
- When g = 4 the Igusa modular form defines an analytic hypersurface (the Schottky locus) in terms of theta functions
- For higher genus, there are analytical equations in terms of theta functions defining a locus containing the Schottky locus

Definition

For fixed τ , the values $\theta \begin{bmatrix} \varepsilon \\ \delta \end{bmatrix} (\mathbf{0} | \tau)$ are known as *theta constants*. If $\varepsilon \cdot \delta \equiv 0, 1 \pmod{2}$ these are even, odd.

Theta functions and theta constants play an important role in the

Schottky problem

- When $g \leq 3$, the Schottky locus is \mathbb{H}_g
- When g = 4 the Igusa modular form defines an analytic hypersurface (the Schottky locus) in terms of theta functions
- For higher genus, there are analytical equations in terms of theta functions defining a locus containing the Schottky locus
- the theta constants express certain divisors of the curve C, e.g. theta characteristic divisors, which recover the curve itself

Translation Surfaces

Definition

A translation surface (X, ω) is given as the space obtained by identifying the sides of a collection of plane polygons pairwise by translations.

Translation Surfaces

Definition

A translation surface (X, ω) is given as the space obtained by identifying the sides of a collection of plane polygons pairwise by translations.

Translation Surfaces are Riemann Surfaces

Equivalently, a translation surface is a Riemann surface together with a nonzero holomorphic one-form.

Translation Surfaces are Riemann Surfaces

Equivalently, a translation surface is a Riemann surface together with a nonzero holomorphic one-form.

The "Transcendental Divide"

It is well-known that every compact Riemann surface is an algebraic curve. How do we get the underlying algebraic curve *explicitly* starting from the translation surface? Crossing the divide: past approaches

• find charts $\{(U, \psi_U) : U \text{ open in } X, \psi : U \to \mathbb{C}\}$ which satisfy the compatibility of charts to find the Riemann surface explicitly

Crossing the divide: past approaches

- find charts $\{(U, \psi_U) : U \text{ open in } X, \psi : U \to \mathbb{C}\}$ which satisfy the compatibility of charts to find the Riemann surface explicitly
- Find a basis of g holomorphic one-forms on X
 - the space of holomorphic one-forms identifies a canonical model of the curve in some projective space
 - X comes automatically equipped with the one-form locally given by dz
 - if a surface has extra automorphisms or symmetries these can be exploited to find the other one-forms.

Crossing the divide: past approaches

- find charts $\{(U, \psi_U) : U \text{ open in } X, \psi : U \to \mathbb{C}\}$ which satisfy the compatibility of charts to find the Riemann surface explicitly
- Find a basis of g holomorphic one-forms on X
 - the space of holomorphic one-forms identifies a canonical model of the curve in some projective space
 - X comes automatically equipped with the one-form locally given by dz
 - if a surface has extra automorphisms or symmetries these can be exploited to find the other one-forms.
- Use odd theta characteristics to recover the curve.
 - hyperelliptic case: straightforward to find branch points using odd theta characteristics
 - non-hyperelliptic: has been done in low genera explicitly (odd theta characteristics define multitangent hyperplanes) by Lehavi (g = 4, 5) and Çelik et.al. (g = 4)
 - software packages for this exist in Sage and magma.

Our approach: through the Riemann matrix

Yelena Mandelshtam (UC Berkeley) translation surfaces to algebraic curves

Our main tool: discrete Riemann surfaces

A *discrete Riemann surface* is a discrete analogue of a continuous Riemann surface.

- given by a cellular decomposition into Λ (black) and Λ* (white) together with a discrete complex structure
- a discrete one-form ω is a complex function on the one-cells
- A symplectic basis α₁,..., α_g, β₁,..., β_g becomes A and B-periods (by evaluating the integrals of ω along α_i and β_i)

Our main tool: discrete Riemann surfaces

A *discrete Riemann surface* is a discrete analogue of a continuous Riemann surface.

- given by a cellular decomposition into Λ (black) and Λ* (white) together with a discrete complex structure
- a discrete one-form ω is a complex function on the one-cells
- A symplectic basis α₁,..., α_g, β₁,..., β_g becomes A and B-periods (by evaluating the integrals of ω along α_i and β_i)

Discrete Riemann matrices

- 4g discrete black and white *periods* are defined as the integrals that are over the induced black and white closed paths
- there is a unique holomorphic differential such that the black and white A and B periods match a given set of 4g complex values (Bobenko and Günther, 2017)
- the canonical basis of holomorphic one-forms $\omega_1, \ldots, \omega_g$ is well defined where the black and white A periods are chosen to be equal with integration against the curves $\alpha_1, \ldots, \alpha_g$ to the identity matrix.
- The *g* × *g* discrete period matrix entries are the *B* periods with respect to the canonical basis.

Theorem (Bobenko-Skopenkov, 2016)

For a sequence of triangulations of a compact Riemann surface X with the maximal edge length tending to zero and with face angles bounded from zero, the discrete period matrices converge to a Riemann matrix of X.

Theorem (Bobenko-Skopenkov, 2016)

For a sequence of triangulations of a compact Riemann surface X with the maximal edge length tending to zero and with face angles bounded from zero, the discrete period matrices converge to a Riemann matrix of X.

In this work, we consider square subdivisions rather than triangulations, per an announced result of Felix Günther.

Finding the discrete Riemann matrix

Finding the discrete Riemann matrix amounts to solving a system of linear equations:

Finding the discrete Riemann matrix

Finding the discrete Riemann matrix amounts to solving a system of linear equations:

• The discrete Cuachy Riemann relations give us the holomorphicity equations:

$$\dot{i}(x_{i+1,j+1}-x_{i,j})=x_{i,j+1}-x_{i+1,j}.$$

Finding the discrete Riemann matrix

Finding the discrete Riemann matrix amounts to solving a system of linear equations:

• The discrete Cuachy Riemann relations give us the holomorphicity equations:

• From the presentation of our underlying surface as a translation surface, we get the periodicity equations. These essentially encode the side identifications

Our first candidate: the L-shape

Consider the family of translation surfaces given by the L-shape with one side length fixed to be 1 and the other (λ) varying

Our first candidate: the L-shape

Consider the family of translation surfaces given by the L-shape with one side length fixed to be 1 and the other (λ) varying

Theorem (Silhol, 2006 and Rodriguez, 2013) The underlying Riemann matrix of the L-shape with side length λ is given by

$$\tau_{\lambda} = \frac{i}{2\lambda - 1} \begin{pmatrix} 2\lambda^2 - 2\lambda + 1 & -2\lambda(\lambda - 1) \\ -2\lambda(\lambda - 1) & 2\lambda^2 - 2\lambda + 1 \end{pmatrix}$$

and the curve is given by

$$y^2 = x(x^2 - 1)(x - a)(x - 1/a)$$
 for $a \neq -1, 0, 1$

Our first candidate: the L-shape

Consider the family of translation surfaces given by the L-shape with one side length fixed to be 1 and the other (λ) varying

Since the Riemann matrices and equations of the curves are already known for the L-shape, they are a perfect first candidate to test our procedure!

Input: Let $\lambda = p/q$ be rational and reduced so that gcd(p,q) = 1. Let $n \in \mathbb{N} \cup \{0\}$ be the level of subdivision.

Input: Let $\lambda = p/q$ be rational and reduced so that gcd(p,q) = 1. Let $n \in \mathbb{N} \cup \{0\}$ be the level of subdivision.

Output: Discrete Riemann matrix of the *n*th level subdivision for symmetric *L* with side length λ .

Input: Let $\lambda = p/q$ be rational and reduced so that gcd(p,q) = 1. Let $n \in \mathbb{N} \cup \{0\}$ be the level of subdivision.

Output: Discrete Riemann matrix of the *n*th level subdivision for symmetric *L* with side length λ .

Construct an initial bipartite quadrangulation. Divide the shape *L* into squares of size $1/s_{\lambda}$, where $s_{\lambda} = \text{lcm}(q, 2)$.

Input: Let $\lambda = p/q$ be rational and reduced so that gcd(p,q) = 1. Let $n \in \mathbb{N} \cup \{0\}$ be the level of subdivision.

Output: Discrete Riemann matrix of the *n*th level subdivision for symmetric *L* with side length λ .

- Construct an initial bipartite quadrangulation. Divide the shape L into squares of size $1/s_{\lambda}$, where $s_{\lambda} = \text{lcm}(q, 2)$.
- **2** Quadrangulations for further levels of subdivision. Each square of side length $1/s_{\lambda}$ will be divided into 3^{2n} squares, and so the *n*th level approximation will consist of squares of size $1/(3^n s_{\lambda})$.

Input: Let $\lambda = p/q$ be rational and reduced so that gcd(p,q) = 1. Let $n \in \mathbb{N} \cup \{0\}$ be the level of subdivision.

Output: Discrete Riemann matrix of the *n*th level subdivision for symmetric *L* with side length λ .

- Construct an initial bipartite quadrangulation. Divide the shape L into squares of size $1/s_{\lambda}$, where $s_{\lambda} = \text{lcm}(q, 2)$.
- **2** Quadrangulations for further levels of subdivision. Each square of side length $1/s_{\lambda}$ will be divided into 3^{2n} squares, and so the *n*th level approximation will consist of squares of size $1/(3^n s_{\lambda})$.
- Solution Control Co

$$x_{i,j} = \left(\frac{i}{3^n s_{\lambda}}, \frac{j}{3^n s_{\lambda}}\right) \quad \text{for} \quad \begin{cases} 0 \le i \le 3^n s_{\lambda} & 0 \le j \le \lambda 3^n s_{\lambda}, \\ 3^n s_{\lambda} + 1 \le i \le \lambda 3^n s_{\lambda} & 0 \le j \le 3^n s_{\lambda}. \end{cases}$$

Objective equations. For each bottom left of a square, we have a new holomorphicity equation $(3^{2n}(s_{\lambda})^2(2\lambda - 1) \text{ total})$.

- Holomorphicity equations. For each bottom left of a square, we have a new holomorphicity equation $(3^{2n}(s_{\lambda})^2(2\lambda 1) \text{ total})$.
- Periodicity equations. We first choose a symplectic basis of the underlying Riemann surface. For all the *A* periods we have the following equations where the parity *p* is determined by *p* = *b* if *i*+*j* ≡ 0 (mod 2) and *p* = *w* otherwise:

$$\begin{cases} 0 \le j \le 3^n s_\lambda & x_{\lambda 3^n s_\lambda, j} - x_{0, j} = A_1^p \\ 3^n s_\lambda \le j \le \lambda 3^n s_\lambda & x_{3^n s_\lambda, j} - x_{0, j} = A_1^p - A_2^p. \end{cases}$$

We compute similar equations for the B periods,

$$\begin{cases} 0 \le i \le 3^n s_\lambda & x_{i,\lambda 3^n s_\lambda} - x_{i,0} = B_1^p \\ 3^n s_\lambda \le i \le \lambda 3^n s_\lambda & x_{i,3^n s_\lambda} - x_{i,0} = B_1^p + B_2^p. \end{cases}$$

In total we have $2(\lambda 3^n s_{\lambda} + 1)$ equations.

- **Final Normalizations.** In the final two normalizations we have the following number of equations:
 - 2 equations for normalization of holomorphic function $(x_{0,0} = x_{1,0} = 0)$.
 - For each *k* = 1,2, there are 4 equations normalizing to the canonical basis. For *j* = 1,2:

$$A_j^w = A_j^b$$
 and $A_j^w = \begin{cases} 1 & j = k \\ 0 & \text{else.} \end{cases}$

- **Final Normalizations.** In the final two normalizations we have the following number of equations:
 - 2 equations for normalization of holomorphic function $(x_{0,0} = x_{1,0} = 0)$.
 - For each *k* = 1,2, there are 4 equations normalizing to the canonical basis. For *j* = 1,2:

$$A_j^w = A_j^b$$
 and $A_j^w = \begin{cases} 1 & j = k \\ 0 & \text{else.} \end{cases}$

O Solving a system of equations for the discrete approximation. For the *k*th row of the period matrix with k = 1, 2, we obtain the equations by solving the system with a total of $9 + 3^{2n}(s_{\lambda})^{2}(2\lambda - 1) + 2\lambda 3^{n}s_{\lambda}$ variables and $10 + 3^{2n}(s_{\lambda})^{2}(2\lambda - 1) + 2\lambda 3^{n}s_{\lambda}$ equations. Each row is given by

$$\frac{1}{2}(B_1^w + B_1^b, B_2^w + B_2^b).$$

Example: $\lambda = 2$

n	Time	Approximation	
0	0.02	$i\begin{pmatrix} 1.75 & -1.5\\ -1.5 & 2.00 \end{pmatrix}$	
1	0.05	$i \begin{pmatrix} 1.682276986822770 & -1.364553973645541 \\ -1.364553973645541 & 1.729107947291081 \end{pmatrix}$	
2	0.37	$i \begin{pmatrix} 1.670169914926280 & -1.340339829852565 \\ -1.340339829852566 & 1.680679659705133 \end{pmatrix}$	
3	3.92	$i \begin{pmatrix} 1.667472042082942 & -1.334944084165891 \\ -1.334944084165893 & 1.669888168331791 \end{pmatrix}$	
4	28.23	$i \begin{pmatrix} 1.666852605322711 & -1.333705210645449 \\ -1.333705210645455 & 1.66741042129092 \end{pmatrix}$	
5	255.10	$i \begin{pmatrix} 1.666709630962870 & -1.333419261925784 \\ -1.333419261925776 & 1.666838523851582 \end{pmatrix}$	
6	2333.12	$i \begin{pmatrix} 1.666676596082551 & -1.333353192165260 \\ -1.33335319216523 & 1.666706384330567 \end{pmatrix}$	
7	22786.59	$i \begin{pmatrix} 1.6666668961530435 & -1.333337923061337 \\ -1.333337923061278 & 1.666675846122862 \end{pmatrix}$	
∞	$i\begin{pmatrix} \frac{5}{3} & -\frac{4}{3}\\ -\frac{4}{3} & \frac{5}{3} \end{pmatrix}$	$i \begin{pmatrix} 1.666666666667 & -1.33333333333 \\ -1.33333333333 & 1.666666666667 \end{pmatrix}$	

17/30

lshtam (UC Berkeley) translation surfaces to alg

Yelena Mandelshtam (UC Berkeley)

An irrational λ : one approach

Run a 0 level approximation for continued fraction approximations of λ . Here we take $\lambda = \frac{1+\sqrt{3}}{2}$.

Fraction	Tolerance	Time	Time 0 level approximation		
15	10.2	0.22	;(1.155267361944555 -0.582252607292078)		
11	16-2	0.55	^{<i>i</i>} (-0.582252607292077 1.183447277345288)		
56	1a - 3	4.04	(1.15495696004714 - 0.578505984176023)		
41	16-5	4.04	¹ (-0.57850598417602 1.159755674257178)		
209	10.4	56.06	·(1.154756293461396 -0.577572595239909)		
153	10-4	50.90	^{<i>i</i>} (-0.577572595239901 1.155583435806089)		
780	10.5	758 /3	;(1.154710996247692 -0.577390320924590)		
571	10-5	750.45	100.45	l = 5 $l = 100.43$ $l = -0.577390320924568$	^{<i>i</i>} (-0.577390320924568 1.154853829287965)
780	1.0.0	750 42	·(1.154710996247692 -0.577390320924590)		
571	10-0	750.45	^{<i>l</i>} (-0.577390320924568 1.154853829287965)		
2911	1 <i>e</i> -7 744.47	· (1.15471099624769 -0.577390320924590)			
2131		744.47	^{<i>i</i>} (-0.577390320924568 1.154853829287965)		
10864	10.0	774 37	(1.154710996247692 - 0.57739032092459)		
7953	10-0	114.51	(-0.577390320924568 1.154853829287965)		
40545	10.0	971.62	·(1.154710996247692 -0.577390320924590)		
29681	10-9	071.05	^{<i>i</i>} (-0.577390320924568 1.154853829287965)		
	Euro etc	i(2 - 1)	(1.15470053838 -0.57735026919)		
	Exact:	$\overline{\sqrt{3}} \begin{pmatrix} -1 & 2 \end{pmatrix}$	(-0.57735026919 1.15470053838)		

Yelena Mandelshtam (UC Berkeley)

translation surfaces to algebraic curves

An irrational λ : another approach

Fix some continued fraction approximation (here, when $\lambda = \frac{1+\sqrt{3}}{2}$, we take $\frac{10864}{7953}$) and run further levels of subdivision.

Level	Time	Approximation		
0	774 27	· (1.154710996247692 -0.57739032092459)		
0	114.31	(-0.577390320924568 1.154853829287965)		
1	7290.33	, (1.154702501426855 –0.577358617765855)		
1		(-0.577358617765802 1.154735511279386)		
0	72388.83	<i>.</i> (1.154700538230285 −0.577351291004541)		
2		(-0.577351291004404 1.154708167385750)		
∞	10864	(1.15470053534 -0.5773502631)		
	7953	$(-0.5773502631 \ 1.15470053534)$		
∞	$\frac{1+\sqrt{3}}{2}$	·(1.15470053838 -0.57735026919)		
		(-0.57735026919 1.15470053838)		

The Jenkins-Strebel representatives

The JS differentials are a family of surfaces defined for any genus

Figure: The ribbon graph associated to a JS differential of genus g

These can also be drawn as a $1 \times (4g-4)$ rectangle:

Our algorithm (JS surfaces)

The same as for the L-shapes! Except getting the periodicity relations is MUCH harder :(

Our algorithm (JS surfaces)

The same as for the L-shapes! Except getting the periodicity relations is MUCH harder :(

Yelena Mandelshtam (UC Berkeley) translation surfaces to algebraic curves December 6, 2022 21 / 30

Periodicity relations on the JS surfaces

This leads to relations like

$$3_{top} - 3_{bottom} = -\beta_3 + 7_{bottom} - 7_{top} = -\beta_3 + \alpha_3 - \alpha_2 + \beta_2.$$

And in higher genus

$$3_{top} - 3_{bottom} = -\beta_g + (g-2)\alpha_g + \sum_{j=2}^{g-1} (\beta_j - \alpha_j)$$

Yelena Mandelshtam (UC Berkeley) translation surfaces to algebraic curves December 6, 2022 22 / 30

genus 2

n	Time	Approximation		
0	0.01	$\begin{pmatrix} i\\0 \end{pmatrix}$	$\begin{pmatrix} 0\\ i \end{pmatrix}$	
1	0.01	$\begin{pmatrix} -0.162162162162162162 + 0.972972972972973i \\ 0.162162162162162162 + 0.027027027027027i \end{pmatrix}$	$\begin{array}{c} 0.162162162162162+0.027027027027027027i\\ -0.162162162162162162+0.972972972972973i \end{array} \right)$	
2	0.01	$\begin{pmatrix} -0.181145110935355 + 0.966032669224184i \\ 0.181145110935355 + 0.033967330775816i \end{pmatrix}$	$\begin{array}{c} 0.181145110935355 + 0.033967330775816i \\ -0.181145110935355 + 0.966032669224184i \end{array}$	
3	0.88	$\begin{pmatrix} -0.183154151609459 + 0.965246769734320i \\ 0.183154151609459 + 0.034753230265680i \end{pmatrix}$	$\begin{array}{c} 0.183154151609458 + 0.034753230265680i \\ -0.183154151609458 + 0.965246769734320i \end{array}$	
4	6.07	$\begin{pmatrix} -0.183376430458456 + 0.965159203662913i\\ 0.183376430458456 + 0.034840796337087i \end{pmatrix}$	$\begin{array}{c} 0.183376430458456 + 0.034840796337087i \\ -0.183376430458456 + 0.965159203662913i \end{array}$	
5	61.02	$\begin{pmatrix} -0.183401116934991 + 0.965149470930579i \\ 0.183401116934991 + 0.034850529069421i \end{pmatrix}$	$\begin{array}{c} 0.183401116934991 + 0.034850529069421 i \\ -0.183401116934991 + 0.965149470930579 i \end{array}$	
6	539.43	$\begin{pmatrix} -0.183403859739525 + 0.965148389476567i \\ 0.183403859739525 + 0.034851610523432i \end{pmatrix}$	$\begin{array}{c} 0.183403859739525 + 0.034851610523432 i \\ -0.183403859739525 + 0.965148389476568 i \end{array}$	
7	3969.65	$\begin{pmatrix} -0.183404164493890 + 0.965148269314525i \\ 0.183404164493890 + 0.034851730685475i \end{pmatrix}$	$\begin{array}{c} 0.183404164493890 + 0.034851730685474 i \\ -0.183404164493890 + 0.965148269314525 i \end{array}$	

genus 2

n	Time	Approximation		
0	0.01		0 i)	
1	0.01	$ \begin{pmatrix} -0.162162162162162162 + 0.972972972972972973i \\ 0.162162162162162162 + 0.027027027027027i \end{pmatrix} $	$\begin{array}{l} 0.162162162162162+0.027027027027027027i\\ -0.162162162162162162+0.972972972972973i \end{array}$	
2	0.01	$\begin{pmatrix} -0.181145110935355 + 0.966032669224184i \\ 0.181145110935355 + 0.033967330775816i \end{pmatrix}$	0.181145110935355 + 0.033967330775816i - 0.181145110935355 + 0.966032669224184i	
3	0.88	$\begin{pmatrix} -0.183154151609459 + 0.965246769734320i\\ 0.183154151609459 + 0.034753230265680i \end{pmatrix}$	$\begin{array}{c} 0.183154151609458 + 0.034753230265680i \\ -0.183154151609458 + 0.965246769734320i \end{array}$	
4	6.07	$\begin{pmatrix} -0.183376430458456 + 0.965159203662913i\\ 0.183376430458456 + 0.034840796337087i \end{pmatrix}$	$\begin{array}{c} 0.183376430458456 + 0.034840796337087i \\ -0.183376430458456 + 0.965159203662913i \end{array}$	
5	61.02	$\begin{pmatrix} -0.183401116934991 + 0.965149470930579i \\ 0.183401116934991 + 0.034850529069421i \end{pmatrix}$	$\begin{array}{c} 0.183401116934991 + 0.034850529069421 i \\ -0.183401116934991 + 0.965149470930579 i \end{array}$	
6	539.43	$\begin{pmatrix} -0.183403859739525 + 0.965148389476567i \\ 0.183403859739525 + 0.034851610523432i \end{pmatrix}$	$\begin{array}{c} 0.183403859739525 + 0.034851610523432i \\ -0.183403859739525 + 0.965148389476568i \end{array}$	
7	3969.65	$\begin{pmatrix} -0.183404164493890 + 0.965148269314525i\\ 0.183404164493890 + 0.034851730685475i \end{pmatrix}$	$\begin{array}{c} 0.183404164493890 + 0.034851730685474 i \\ -0.183404164493890 + 0.965148269314525 i \end{array}$	

Now we can use the Riemann matrix from level 7 to evaluate the theta constants and find the equation of the underlying curve!

 Yelena Mandelshtam (UC Berkeley)
 translation surfaces to algebraic curves
 December 6, 2022
 23 / 30

• Using the Sage package RiemannTheta we find the odd theta constants which give us the six branch points of the hyperelliptic curve:

 $\alpha_1 := -3.55001177927944 + i \cdot 9.27369555271397,$

 $\alpha_2 := -0.0360027110167584 - i \cdot 0.0940498797751955,$

 $\alpha_3 := 0.603906137193071 + i \cdot 3.24517640725254,$

 $\alpha_4 := 0.0554252204362169 - i \cdot 0.297835386410189,$

 $\alpha_5 := 3.90800485599692 - i \cdot 7.79154768793860,$

 $\alpha_6 := 0.0514341663705383 + i \cdot 0.102546382318450.$

• Observe that $\alpha_1 \cdot \alpha_2 = \alpha_3 \cdot \alpha_4 = \alpha_5 \cdot \alpha_6 = 1$

• Using the Sage package RiemannTheta we find the odd theta constants which give us the six branch points of the hyperelliptic curve:

 $\alpha_1 := -3.55001177927944 + i \cdot 9.27369555271397,$

 $\alpha_2 := -0.0360027110167584 - i \cdot 0.0940498797751955,$

 $\alpha_3 := 0.603906137193071 + i \cdot 3.24517640725254,$

 $\alpha_4 := 0.0554252204362169 - i \cdot 0.297835386410189,$

 $\alpha_5 := 3.90800485599692 - i \cdot 7.79154768793860,$

 $\alpha_6 := 0.0514341663705383 + i \cdot 0.102546382318450.$

• Observe that $\alpha_1 \cdot \alpha_2 = \alpha_3 \cdot \alpha_4 = \alpha_5 \cdot \alpha_6 = 1$

• Computing the even theta constants we notice that for the pairs

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}, \quad \left\{ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}, \quad \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\},$$

the theta constants coincide

Our observations lead us to make the following conjecture

Conjecture (Çelik-Fairchild-M., 2022)

The family of hyperelliptic curves corresponding to the family of the translation surfaces, $J_2(\lambda, \mu)$ of genus 2, in the stratum $\mathcal{H}(1,1)$, is given by the equation:

$$y^{2} = (x-a)(x-1/a)(x-b)(x-1/b)(x-c)(x-1/c)$$

for some complex parameters a, b, c.

Our observations lead us to make the following conjecture

Conjecture (Çelik-Fairchild-M., 2022)

The family of hyperelliptic curves corresponding to the family of the translation surfaces, $J_2(\lambda, \mu)$ of genus 2, in the stratum $\mathcal{H}(1,1)$, is given by the equation:

$$y^{2} = (x-a)(x-1/a)(x-b)(x-1/b)(x-c)(x-1/c)$$

for some complex parameters a, b, c.

• This suggests that the hyperelliptic curve corresponding to J_2 has an extra involution $(x, y) \mapsto (1/x, y)$

Our observations lead us to make the following conjecture

Conjecture (Çelik-Fairchild-M., 2022)

The family of hyperelliptic curves corresponding to the family of the translation surfaces, $J_2(\lambda, \mu)$ of genus 2, in the stratum $\mathcal{H}(1,1)$, is given by the equation:

$$y^{2} = (x-a)(x-1/a)(x-b)(x-1/b)(x-c)(x-1/c)$$

for some complex parameters a, b, c.

- This suggests that the hyperelliptic curve corresponding to J_2 has an extra involution $(x, y) \mapsto (1/x, y)$
- Exact recovery of these curves may be possible, similar to the work of Silhol and Rodriguez for the L-shape.

J_3 table

п	Time	Approximation
0	0.01	$\begin{pmatrix} i & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & 2i \end{pmatrix}$
1	0.01	$ \begin{pmatrix} -0.16363636364 + 0.972727273i & 0.001474201 + 0.000245700i & -0.162162162 - 0.027027027i \\ 0.001474201 + 0.000245700i & -0.163636364 + 0.972727273i & -0.162162162 - 0.027027027i \\ -0.162162162 - 0.027027027i & -0.162162162 - 0.027027027i & -0.324324324 + 1.945945946i \end{pmatrix} $
2	0.01	$ \begin{pmatrix} -0.181890640 + 0.965429514i & 0.000745530 + 0.000603155i & -0.181145111 - 0.033967331i \\ 0.000745530 + 0.000603155i & -0.181890640 + 0.965429514i & -0.181145111 - 0.033967331i \\ -0.181145111 - 0.033967331i & -0.181145111 - 0.033967331i & -0.362290222 + 1.932065338i \end{pmatrix} $
3	0.27	$ \begin{pmatrix} -0.183837862 + 0.964626792 i & 0.000683710 + 0.000619978 i & -0.183154152 - 0.034753230 i \\ 0.006837101 + 0.000619978 i & -0.183837862 + 0.964626792 i & -0.183154152 - 0.034753230 i \\ -0.183154152 - 0.034753230 i & -0.183154152 - 0.034753230 i & -0.366308303 + 1.930493539 i \end{pmatrix} $
4	2.65	$ \begin{pmatrix} -0.184053419 + 0.964537638i & 0.000676988 + 0.000621565i & -0.183376430 - 0.034840796i \\ 0.000676988 + 0.000621565i & -0.1840534189 + 0.964537638i & -0.183376430 - 0.034840796i \\ -0.183376430 - 0.034840796i & -0.183376430 - 0.034840796i & -0.366752861 + 1.930318407i \end{pmatrix} $
5	38.37	$ \begin{pmatrix} -0.184077360+0.964527733i & 0.000676243+0.000621738i & -0.183401117-0.034850529i \\ 0.000676243+0.000621738i & -0.184077360+0.964527733i & -0.183401117-0.034850529i \\ -0.183401117-0.034850529i & -0.183401117-0.034850529i & -0.366802234+1.930298942i \\ \end{pmatrix} $
6	398.04	$ \begin{pmatrix} -0.1840800120 + 0.964526632 i & 0.000676160 + 0.000621757 i & -0.183403860 - 0.034851611 i \\ 0.000676160 + 0.000621757 i & -0.1840800120 + 0.964526632 i & -0.183403860 - 0.034851611 i \\ -0.183403860 - 0.034851611 i & -0.183403860 - 0.034851611 i & -0.366807719 + 1.930296779 i \end{pmatrix} $
7	3429.78	$ \begin{pmatrix} -0.184080315 + 0.96452651i & 0.000676151 + 0.000621759i & -0.183404164 - 0.034851731i \\ 0.000676151 + 0.000621759i & -0.184080315 + 0.96452651i & -0.183404164 - 0.034851731i \\ -0.183404164 - 0.034851731i & -0.183404164 - 0.034851731i & -0.366808329 + 1.930296539i \end{pmatrix} $

Yelena Mandelshtam (UC Berkeley) translation surfaces to algebraic curves

n	Time	Approximation
0	0.01	$\begin{pmatrix} i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & 3i \end{pmatrix}$
1	0.01	$ \begin{pmatrix} -0.163639 + 0.972727i & 0.000739 + 0.000123i & 0.00073859 + 0.000123i & -0.162162 - 0.027027i \\ 0.000739 + 0.000123i & -0.163639 + 0.972727i & 0.000739 + 0.000123i & -0.162162 - 0.027027i \\ 0.000739 + 0.000123i & 0.000739 + 0.000123i & -0.163639 + 0.972727i & -0.162162 - 0.027027i \\ -0.162162 - 0.0270027i & -0.162162 - 0.027027i & -0.162162 - 0.027027i \\ -0.162162 - 0.027027i & -0.162162 - 0.027027i & -0.486486 + 2.918919j \\ \end{pmatrix} $
2	0.02	$ \begin{pmatrix} -0.181893 + 0.96543 i & 0.000374 + 0.000301 i & 0.000374 + 0.000301 i & -0.181145 - 0.033967 i \\ 0.000374 + 0.000301 i & -0.181893 + 0.965430 i & 0.000374 + 0.000301 i & -0.181145 - 0.033967 i \\ 0.000374 + 0.000301 i & 0.000374 + 0.000301 i & -0.181893 + 0.96543 i & -0.181145 - 0.033967 i \\ -0.181145 - 0.033967 i & -0.181145 - 0.033967 i & -0.181145 - 0.033967 i \\ -0.181145 - 0.033967 i & -0.181145 - 0.033967 i & -0.181145 - 0.033967 i \\ -0.181145 - 0.033967 i & -0.18145 - 0.033967 i \\ -0.181145 - 0.033967 i & -0.18145 - 0.033967 i \\ -0.181145 - 0.033967 i & -0.18145 - 0.033967 i \\ -0.1810000000000000000000000000000000000$
3	.48	$ \begin{pmatrix} -0.18384 + 0.964628i & 0.000343 + 0.00031i & 0.000343 + 0.00031i & -0.183154 - 0.034753i \\ 0.000343 + 0.00031i & -0.18384 + 0.964628i & 0.000343 + 0.00031i & -0.183154 - 0.034753i \\ 0.000343 + 0.00031i & 0.000343 + 0.00031i & -0.183154 - 0.034753i \\ -0.183154 - 0.034753i & -0.183154 - 0.034753i & -0.183154 - 0.034753i \\ -0.183154 - 0.034753i & -0.183154 - 0.034753i & -0.549462 + 2.89574i \\ \end{pmatrix} $
4	5.70	$ \begin{pmatrix} -0.18384 + 0.964628i & 0.000343 + 0.00031i & 0.000343 + 0.00031i & -0.183154 - 0.034753i \\ 0.0003437 + 0.00031i & -0.18384 + 0.964628i & 0.000343 + 0.00031i & -0.183154 - 0.034753i \\ 0.000343 + 0.00031i & 0.000343 + 0.00031i & -0.183154 - 0.034753i \\ -0.183154 - 0.034753i & -0.183154 - 0.034753i & -0.183154 - 0.034753i \\ -0.183154 - 0.034753i & -0.183154 - 0.034753i & -0.549462 + 2.89574i \\ \end{pmatrix} $
5	89.00	$ \begin{pmatrix} -0.184079 + 0.964529i & 0.000339 + 0.000310i & 0.000339 + 0.000310i & -0.183401 - 0.034851i \\ 0.000339 + 0.000310i & -0.184079 + 0.964529i & 0.000339 + 0.0003103i & -0.183401 - 0.034851i \\ 0.000339 + 0.000310i & 0.000339 + 0.000310i & -0.184079 + 0.964529i & -0.183401 - 0.034851i \\ -0.183401 - 0.0348518i & -0.183401 - 0.034851i & -0.183401 - 0.034851i \\ -0.183401 - 0.0348518i & -0.183401 - 0.034851i & -0.183401 - 0.034851i \\ -0.183401 - 0.0348518i & -0.183401 - 0.034851i \\ -0.183401 - 0.034851i & -0.$
6	846.84	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
7	7997.04	

Yelena Mandelshtam (UC Berkeley)

translation surfaces to algebraic curves

n	Time	Approximation		
0	0.01	$\begin{pmatrix} i & 0 & 0 & 0 & 0 \\ 0 & i & 0 & 0 & 0 \\ 0 & 0 & i & 0 & 0 \\ 0 & 0 & 0 & i & 0 \\ 0 & 0 & 0 & i & 0 \\ 0 & 0 & 0 & 0 & i \\ 0 & 0 & 0 & 0 & 4i \\ \end{pmatrix}$		
1	0.01	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
2	0.03	$ \begin{array}{c} -0.181893 + 0.98543i & 0.000373 + 0.000302i & 0.000002 - 0.00001i & 0.000373 + 0.000373i & -0.018145 - 0.033967i \\ 0.000373 + 0.000302i & -0.181839 + 0.96543i & 0.00373 + 0.00032i & 0.000002 - 0.00001i & -0.181145 - 0.033967i \\ 0.0000373 + 0.000302i & 0.0000373 + 0.000302i & -0.181893 + 0.965430i & 0.000373 + 0.000302i & -0.181145 - 0.033967i \\ 0.000373 + 0.000302i & 0.000002 - 0.000001i & 0.000373 + 0.00032i & -0.181893 + 0.96543i & -0.181145 - 0.033967i \\ -0.181145 - 0.033967i & -0.181145 - 0.033967i & -0.181145 - 0.033967i & -0.181145 - 0.033967i \\ \end{array} $		
3	0.69	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
4	9.02	$ \begin{array}{c} -0.184055 + 0.964334i & 0.0003314 + 0.000311i & 0.000002 - 0.000001i & 0.000384 + 0.000311i & -0.183376 - 0.034841i \\ 0.000338 + 0.000311i & -0.184055 + 0.964538i & 0.0003314 + 0.000311i & 0.000002 - 0.000001i & -0.183376 - 0.034841i \\ 0.000001 - 0.000001i & 0.000338 + 0.000311i & -0.184055 + 0.964538i & 0.000311i & -0.183376 - 0.034841i \\ 0.000338 + 0.000311i & 0.000331i & 0.000338 + 0.000311i & -0.184055 + 0.964538i & -0.00331i & -0.183376 - 0.034841i \\ -0.183376 - 0.034841i & -0.183376 - 0.034841i & -0.183376 - 0.034841i & -0.183376 - 0.034841i & -0.183376 - 0.034841i \\ \end{array} $		
5	94.25	$ \begin{array}{c} -0.184079 + 0.964529i & 0.000338 + 0.000311i & 0.000001 - 0.000011i & 0.00038 + 0.000311i & -0.183401 - 0.034851i \\ 0.000338 + 0.000311i & -0.184079 + 0.964529i & 0.000338 + 0.000311i & 0.000320 - 0.00001i & -0.183401 - 0.034851i \\ 0.000032 - 0.000001i & 0.000338 + 0.000311i & -0.184079 + 0.964529i & 0.000338 + 0.000311i & -0.183401 - 0.034851i \\ 0.000338 + 0.000311i & 0.00002 - 0.000001i & 0.000338 + 0.000311i & -0.184079 + 0.964529i & 0.000338 + 0.000311i & -0.183401 - 0.034851i \\ -0.183401 - 0.034851i & -0.034851i & -0.184071 + 0.964529i & -0.183401 - 0.034851i & -$		
6	1051.54	$ \begin{array}{c} -0.184082 + 0.964527i & 0.000338 + 0.000311i & 0.000002 - 0.000001i & 0.000338 + 0.000311i & -0.183404 - 0.0348527i \\ 0.000338 + 0.000311i & -0.184062 + 0.964527i & 0.00338 + 0.000311i & -0.00001i & -0.183404 - 0.034852i \\ 0.000032 + 0.00001i & 0.000338 + 0.000311i & -0.184082 + 0.964527i & 0.000338 + 0.000311i & -0.183404 - 0.034852i \\ 0.000338 + 0.000311i & 0.000002 - 0.000001i & 0.000338 + 0.000311i & -0.184082 + 0.964527i & -0.18404 + 0.034852i \\ -0.183404 - 0.034852i & -0.184042 + 0.94452i & -0.184082 + 0.96452i & -0.183404 + -0.034852i \\ -0.183404 - 0.034852i & -0.184042 + 0.034852i & -0.184082 + 0.96452i \\ \end{array} $		
7	12739.99	$ \begin{array}{c} -0.184082 + 0.964527i & 0.000338 + 0.000311i & 0.000002 - 0.000001i & 0.000388 + 0.00031ii & -0.18404 - 0.034852i \\ 0.000338 + 0.000312i & -0.184082 + 0.964527i & 0.000338 + 0.00031i & 0.000316i & -0.183404 - 0.034852i \\ 0.000032 + 0.00001i & 0.000338 + 0.000311i & -0.184082 + 0.964527i & 0.000338 + 0.000311i & -0.183404 - 0.034852i \\ 0.000338 + 0.000311i & 0.0000020.000001i & 0.000338 + 0.000311i & -0.184082 + 0.964527i & 0.18404 + 0.034852i \\ -0.183404 - 0.034852i & -0.184042 + 0.964527i & -0.184082 + 0.964527i & -0.184082 + 0.964527i & -0.18404 + 0.034852i \\ -0.183404 - 0.034852i & -0.184042 + 0.034852i & -0.184042 + 0.034852i & -0.183404 + -0.034852i \\ \end{array}$		

Yelena Mandelshtam (UC Berkeley)

translation surfaces to algebraic curves

December 6, 2022

Our questions of interest were:

• Are the curves hyperelliptic?

- Are the curves hyperelliptic?
 - This question is tied to the vanishing of even theta constants

- Are the curves hyperelliptic?
 - This question is tied to the vanishing of even theta constants
 - When g = 3, we found that there is one vanishing even theta constant

- Are the curves hyperelliptic?
 - This question is tied to the vanishing of even theta constants
 - When g = 3, we found that there is one vanishing even theta constant
 - When g = 4, we found that there are 10 vanishing even theta constants

- Are the curves hyperelliptic?
 - This question is tied to the vanishing of even theta constants
 - When g = 3, we found that there is one vanishing even theta constant
 - When g = 4, we found that there are 10 vanishing even theta constants
 - When g = 5, we found more than 10 vanishing even theta constants

Our questions of interest were:

- Are the curves hyperelliptic?
 - This question is tied to the vanishing of even theta constants
 - When g = 3, we found that there is one vanishing even theta constant
 - When g = 4, we found that there are 10 vanishing even theta constants
 - When g = 5, we found more than 10 vanishing even theta constants

Conjecture (Çelik-Fairchild-M., 2022)

The surface J_g is hyperelliptic for g = 3, 4, 5.

Our questions of interest were:

- Are the curves hyperelliptic?
 - This question is tied to the vanishing of even theta constants
 - When g = 3, we found that there is one vanishing even theta constant
 - When g = 4, we found that there are 10 vanishing even theta constants
 - When g = 5, we found more than 10 vanishing even theta constants

Conjecture (Çelik-Fairchild-M., 2022)

The surface J_g is hyperelliptic for g = 3, 4, 5.

• Are the approximating Riemann matrices (for *g* = 4,5 in the Schottky locus?)

Our questions of interest were:

- Are the curves hyperelliptic?
 - This question is tied to the vanishing of even theta constants
 - When g = 3, we found that there is one vanishing even theta constant
 - When g = 4, we found that there are 10 vanishing even theta constants
 - When g = 5, we found more than 10 vanishing even theta constants

Conjecture (Çelik-Fairchild-M., 2022)

The surface J_g is hyperelliptic for g = 3, 4, 5.

- Are the approximating Riemann matrices (for *g* = 4,5 in the Schottky locus?)
 - When g = 4 yes, when g = 5 they are within the weak Schottky locus.

Thank you!