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Riemann Surfaces, analytic and algebraic

Definition
A Riemann surface is a one dimensional complex manifold.

A compact Riemann surface is a complex smooth algebraic curve
(known from the time of Riemann)

Definition
Given a genus g surface X with homology basis α1, . . . ,αg and β1, . . . ,βg .
Let ω1, . . . ,ωg be a basis of the space of differential forms on X . Then the
period matrix of X is

∫
α1
ω1 . . .

∫
αg
ω1

∫
β1
ω1 . . .

∫
βg
ω1

...
. . .

...
...

. . .
...∫

α1
ωg . . .

∫
αg
ωg

∫
β1
ωg . . .

∫
βg
ωg
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Riemann matrices and theta functions

Definition

If the period matrix of X is (τ1|τ2) :=
((∫

αi
ωj

)∣∣∣(∫βi
ωj

))
, the matrix

τ := τ−1
1 τ2 is called a Riemann matrix of X .

g ×g symmetric matrix with positive definite imaginary part, lies in the
Siegel upper half space Hg

Definition
The theta function with characteristic ε,δ ∈ {0,1}g is a complex-valued
function defined on Cg ×Hg :

θ

[
ε

δ

]
(z |τ) = ∑

n∈Zg

exp

(
πi

(
n+ ε

2

)T
τ
(
n+ ε

2

)
+

(
n+ ε

2

)T
(

z+ δ

2

))
.

When ε= δ= 0, this is the Riemann theta function
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Theta functions and theta constants

Definition

For fixed τ, the values θ
[
ε

δ

]
(0 |τ) are known as theta constants. If

ε ·δ≡ 0,1(mod 2) these are even, odd.

Theta functions and theta constants play an important role in the

Schottky problem
Which matrices in Hg are a Riemann matrix for some curve?

When g ≤ 3, the Schottky locus is Hg

When g = 4 the Igusa modular form defines an analytic hypersurface
(the Schottky locus) in terms of theta functions
For higher genus, there are analytical equations in terms of theta
functions defining a locus containing the Schottky locus
the theta constants express certain divisors of the curve C, e.g. theta
characteristic divisors, which recover the curve itself
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Translation Surfaces

Definition
A translation surface (X ,ω) is given as the space obtained by identifying
the sides of a collection of plane polygons pairwise by translations.

Examples:

• • •

•

•

• •

•
•
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Translation Surfaces are Riemann Surfaces

Equivalently, a translation surface is a Riemann surface together with a
nonzero holomorphic one-form.

The “Transcendental Divide”
It is well-known that every compact Riemann surface is an algebraic curve.
How do we get the underlying algebraic curve explicitly starting from the
translation surface?
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Crossing the divide: past approaches

find charts {(U ,ψU ) : U open in X ,ψ : U →C} which satisfy the
compatibility of charts to find the Riemann surface explicitly

Find a basis of g holomorphic one-forms on X
the space of holomorphic one-forms identifies a canonical model of the
curve in some projective space
X comes automatically equipped with the one-form locally given by dz
if a surface has extra automorphisms or symmetries these can be
exploited to find the other one-forms.

Use odd theta characteristics to recover the curve.
hyperelliptic case: straightforward to find branch points using odd
theta characteristics
non-hyperelliptic: has been done in low genera explicitly (odd theta
characteristics define multitangent hyperplanes) by Lehavi (g = 4,5)
and Çelik et.al. (g = 4)
software packages for this exist in Sage and magma.
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Our approach: through the Riemann matrix

The transcendental divide

Translation surface Algebraic curve

Riemann matrix

Theta constants
Thomae formulas
Weber formulas???
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Our main tool: discrete Riemann surfaces

A discrete Riemann surface is a discrete analogue of a continuous Riemann
surface.

given by a cellular decomposition into Λ
(black) and Λ∗ (white) together with a
discrete complex structure
a discrete one-form ω is a complex
function on the one-cells
A symplectic basis α1, . . . ,αg ,β1, . . . ,βg

becomes A and B-periods (by evaluating
the integrals of ω along αi and βi)

B1

B2

A2

A1
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Discrete Riemann matrices

4g discrete black and white periods are defined as the integrals that
are over the induced black and white closed paths
there is a unique holomorphic differential such that the black and
white A and B periods match a given set of 4g complex values
(Bobenko and Günther, 2017)
the canonical basis of holomorphic one-forms ω1, . . . ,ωg is well defined
where the black and white A periods are chosen to be equal with
integration against the curves α1, . . . ,αg to the identity matrix.
The g ×g discrete period matrix entries are the B periods with respect
to the canonical basis.
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Convergence results

Theorem (Bobenko-Skopenkov, 2016)

For a sequence of triangulations of a compact Riemann surface X with the
maximal edge length tending to zero and with face angles bounded from
zero, the discrete period matrices converge to a Riemann matrix of X.

In this work, we consider square subdivisions rather than triangulations, per
an announced result of Felix Günther.
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Finding the discrete Riemann matrix

Finding the discrete Riemann matrix amounts to solving a system of linear
equations:

The discrete Cuachy Riemann relations give us the holomorphicity
equations:

xi,j xi+1,j

xi,j+1 xi+1,j+1

i(xi+1,j+1 −xi,j) = xi,j+1 −xi+1,j.

From the presentation of our underlying surface as a translation
surface, we get the periodicity equations. These essentially encode the
side identifications
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Our first candidate: the L-shape

Consider the family of translation surfaces given by the L-shape with one
side length fixed to be 1 and the other (λ) varying

1

1

2

2

3 3

4 4

λ

λ

Theorem (Silhol, 2006 and Rodriguez, 2013)

The underlying Riemann matrix of the
L-shape with side length λ is given by

τλ =
i

2λ−1

(
2λ2 −2λ+1 −2λ(λ−1)
−2λ(λ−1) 2λ2 −2λ+1

)
.

and the curve is given by

y2 = x(x2 −1)(x−a)(x−1/a) for a ̸= −1,0,1

Since the Riemann matrices and equations of the curves are already known
for the L-shape, they are a perfect first candidate to test our procedure!
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Our algorithm (L-shape)

Input: Let λ= p/q be rational and reduced so that gcd(p,q) = 1. Let
n ∈N∪ {0} be the level of subdivision.

Output: Discrete Riemann matrix of the nth level subdivision for
symmetric L with side length λ.

1 Construct an initial bipartite quadrangulation. Divide the shape L
into squares of size 1/sλ, where sλ = lcm(q,2).

2 Quadrangulations for further levels of subdivision. Each square of
side length 1/sλ will be divided into 32n squares, and so the nth level
approximation will consist of squares of size 1/(3nsλ).

3 Labelling vertices. We label the vertices with the following bounds
to match the L shape:

xi,j =
(

i

3nsλ
,

j

3nsλ

)
for

{
0 ≤ i ≤ 3nsλ 0 ≤ j ≤λ3nsλ,

3nsλ+1 ≤ i ≤λ3nsλ 0 ≤ j ≤ 3nsλ.
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Our algorithm (L-shape)

4 Holomorphicity equations. For each bottom left of a square, we
have a new holomorphicity equation (32n(sλ)2(2λ−1) total).

5 Periodicity equations. We first choose a symplectic basis of the
underlying Riemann surface. For all the A periods we have the
following equations where the parity p is determined by p = b if
i+ j ≡ 0 (mod 2) and p = w otherwise:{

0 ≤ j ≤ 3nsλ xλ3nsλ,j −x0,j = Ap
1

3nsλ ≤ j ≤λ3nsλ x3nsλ,j −x0,j = Ap
1 −Ap

2 .

We compute similar equations for the B periods,{
0 ≤ i ≤ 3nsλ xi,λ3nsλ −xi,0 = Bp

1

3nsλ ≤ i ≤λ3nsλ xi,3nsλ −xi,0 = Bp
1 +Bp

2 .

In total we have 2(λ3nsλ+1) equations.
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Our algorithm (L-shape)

4 Holomorphicity equations. For each bottom left of a square, we
have a new holomorphicity equation (32n(sλ)2(2λ−1) total).
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Our algorithm (L-shape)

6 Final Normalizations. In the final two normalizations we have the
following number of equations:

2 equations for normalization of holomorphic function (x0,0 = x1,0 = 0).
For each k = 1,2, there are 4 equations normalizing to the canonical
basis. For j = 1,2:

Aw
j = Ab

j and Aw
j =

{
1 j = k

0 else.

7 Solving a system of equations for the discrete approximation.
For the kth row of the period matrix with k = 1,2, we obtain the
equations by solving the system with a total of
9+32n(sλ)2(2λ−1)+2λ3nsλ variables and
10+32n(sλ)2(2λ−1)+2λ3nsλ equations. Each row is given by

1

2
(Bw

1 +Bb
1,Bw

2 +Bb
2).

Yelena Mandelshtam (UC Berkeley) translation surfaces to algebraic curves December 6, 2022 16 / 30



Our algorithm (L-shape)

6 Final Normalizations. In the final two normalizations we have the
following number of equations:

2 equations for normalization of holomorphic function (x0,0 = x1,0 = 0).
For each k = 1,2, there are 4 equations normalizing to the canonical
basis. For j = 1,2:

Aw
j = Ab

j and Aw
j =

{
1 j = k

0 else.

7 Solving a system of equations for the discrete approximation.
For the kth row of the period matrix with k = 1,2, we obtain the
equations by solving the system with a total of
9+32n(sλ)2(2λ−1)+2λ3nsλ variables and
10+32n(sλ)2(2λ−1)+2λ3nsλ equations. Each row is given by

1

2
(Bw

1 +Bb
1,Bw

2 +Bb
2).

Yelena Mandelshtam (UC Berkeley) translation surfaces to algebraic curves December 6, 2022 16 / 30



Example: λ= 2

n Time Approximation

0 0.02 i

(
1.75 −1.5
−1.5 2.00

)
1 0.05 i

(
1.682276986822770 −1.364553973645541
−1.364553973645541 1.729107947291081

)
2 0.37 i

(
1.670169914926280 −1.340339829852565
−1.340339829852566 1.680679659705133

)
3 3.92 i

(
1.667472042082942 −1.334944084165891
−1.334944084165893 1.669888168331791

)
4 28.23 i

(
1.666852605322711 −1.333705210645449
−1.333705210645455 1.66741042129092

)
5 255.10 i

(
1.666709630962870 −1.333419261925784
−1.333419261925776 1.666838523851582

)
6 2333.12 i

(
1.666676596082551 −1.333353192165260
−1.33335319216523 1.666706384330567

)
7 22786.59 i

(
1.666668961530435 −1.333337923061337
−1.333337923061278 1.666675846122862

)
∞ i

( 5
3 −4

3
−4

3
5
3

)
i

(
1.66666666667 −1.33333333333
−1.33333333333 1.66666666667

)
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An irrational λ: one approach

Run a 0 level approximation for continued fraction approximations of λ.
Here we take λ= 1+p3

2 .
Fraction Tolerance Time 0 level approximation

15
11 1e−2 0.33 i

(
1.155267361944555 −0.582252607292078
−0.582252607292077 1.183447277345288

)
56
41 1e−3 4.04 i

(
1.15495696004714 −0.578505984176023
−0.57850598417602 1.159755674257178

)
209
153 1e−4 56.96 i

(
1.154756293461396 −0.577572595239909
−0.577572595239901 1.155583435806089

)
780
571 1e−5 758.43 i

(
1.154710996247692 −0.577390320924590
−0.577390320924568 1.154853829287965

)
780
571 1e−6 758.43 i

(
1.154710996247692 −0.577390320924590
−0.577390320924568 1.154853829287965

)
2911
2131 1e−7 744.47 i

(
1.15471099624769 −0.577390320924590

−0.577390320924568 1.154853829287965

)
10864
7953 1e−8 774.37 i

(
1.154710996247692 −0.57739032092459
−0.577390320924568 1.154853829287965

)
40545
29681 1e−9 871.63 i

(
1.154710996247692 −0.577390320924590
−0.577390320924568 1.154853829287965

)
Exact: ip

3

(
2 −1
−1 2

)
i

(
1.15470053838 −0.57735026919
−0.57735026919 1.15470053838

)
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An irrational λ: another approach

Fix some continued fraction approximation (here, when λ= 1+p3
2 , we take

10864
7953 ) and run further levels of subdivision.

Level Time Approximation

0 774.37 i

(
1.154710996247692 −0.57739032092459
−0.577390320924568 1.154853829287965

)
1 7290.33 i

(
1.154702501426855 −0.577358617765855
−0.577358617765802 1.154735511279386

)
2 72388.83 i

(
1.154700538230285 −0.577351291004541
−0.577351291004404 1.154708167385750

)
∞ 10864

7953 i

(
1.15470053534 −0.5773502631
−0.5773502631 1.15470053534

)
∞ 1+p3

2 i

(
1.15470053838 −0.57735026919
−0.57735026919 1.15470053838

)
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The Jenkins-Strebel representatives

The JS differentials are a family of surfaces defined for any genus

Figure: The ribbon graph associated to a JS differential of genus g

These can also be drawn as a 1× (4g −4) rectangle:

0 0

1 2 3 4 5 6 7 8

2 1 4 7 6 5 8 3

α1 α2 α3α3β1 β2 β3β3
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Our algorithm (JS surfaces)

The same as for the L-shapes! Except getting the periodicity relations is
MUCH harder :(

0 0

1 2 3 4 5 6 7 8

2 1 4 7 6 5 8 3

α1 α2 α3α3β1 β2 β3β3

α3α1 α2

β1 β3 β2

8

4

2 6

1

1

3

3

7

7

5

5

0

0
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1 2 3 4 5 6 7 8

2 1 4 7 6 5 8 3

α1 α2 α3α3β1 β2 β3β3

α3α1 α2

β1 β3 β2

8

4

2 6

1

1

3

3

7

7

5

5

0
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Periodicity relations on the JS surfaces

For g = 3 we have

0 0

1 2 3 4 5 6 7 8

2 1 4 7 6 5 8 3

α1 α2 α3α3β1 β2 β3β3

α3α1 α2

β1 β3 β2

8

4

2 6

1

1

3

3

7

7

5

5

0

0

This leads to relations like

3top −3bottom =−β3 +7bottom −7top =−β3 +α3 −α2 +β2.

And in higher genus

3top −3bottom =−βg + (g −2)αg +
g−1∑
j=2

(βj −αj)
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genus 2

n Time Approximation

0 0.01
(

i 0
0 i

)
1 0.01

(−0.162162162162162+0.972972972972973i 0.162162162162162+0.027027027027027i
0.162162162162162+0.027027027027027i −0.162162162162162+0.972972972972973i

)
2 0.01

(−0.181145110935355+0.966032669224184i 0.181145110935355+0.033967330775816i
0.181145110935355+0.033967330775816i −0.181145110935355+0.966032669224184i

)
3 0.88

(−0.183154151609459+0.965246769734320i 0.183154151609458+0.034753230265680i
0.183154151609459+0.034753230265680i −0.183154151609458+0.965246769734320i

)
4 6.07

(−0.183376430458456+0.965159203662913i 0.183376430458456+0.034840796337087i
0.183376430458456+0.034840796337087i −0.183376430458456+0.965159203662913i

)
5 61.02

(−0.183401116934991+0.965149470930579i 0.183401116934991+0.034850529069421i
0.183401116934991+0.034850529069421i −0.183401116934991+0.965149470930579i

)
6 539.43

(−0.183403859739525+0.965148389476567i 0.183403859739525+0.034851610523432i
0.183403859739525+0.034851610523432i −0.183403859739525+0.965148389476568i

)
7 3969.65

(−0.183404164493890+0.965148269314525i 0.183404164493890+0.034851730685474i
0.183404164493890+0.034851730685475i −0.183404164493890+0.965148269314525i

)

Now we can use the Riemann matrix from level 7 to evaluate the theta
constants and find the equation of the underlying curve!
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Genus 2 experiments

Using the Sage package RiemannTheta we find the odd theta
constants which give us the six branch points of the hyperelliptic curve:

α1 :=−3.55001177927944+ i ·9.27369555271397,

α2 :=−0.0360027110167584− i ·0.0940498797751955,

α3 := 0.603906137193071+ i ·3.24517640725254,

α4 := 0.0554252204362169− i ·0.297835386410189,

α5 := 3.90800485599692− i ·7.79154768793860,

α6 := 0.0514341663705383+ i ·0.102546382318450.

Observe that α1 ·α2 =α3 ·α4 =α5 ·α6 = 1

Computing the even theta constants we notice that for the pairs{[
1 0
0 0

]
,

[
0 1
0 0

]}
,

{[
0 0
1 0

]
,

[
0 0
0 1

]}
,

{[
1 0
0 1

]
,

[
0 1
1 0

]}
,

the theta constants coincide
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Genus 2 experiments

Our observations lead us to make the following conjecture

Conjecture (Çelik-Fairchild-M., 2022)

The family of hyperelliptic curves corresponding to the family of the
translation surfaces, J2(λ,µ) of genus 2, in the stratum H (1,1), is given by
the equation:

y2 = (x−a)(x−1/a)(x−b)(x−1/b)(x− c)(x−1/c)

for some complex parameters a,b,c.

This suggests that the hyperelliptic curve corresponding to J2 has an
extra involution (x,y) 7→ (1/x,y)

Exact recovery of these curves may be possible, similar to the work of
Silhol and Rodriguez for the L-shape.
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J3 table
n Time Approximation

0 0.01

 i 0 0
0 i 0
0 0 2i


1 0.01

−0.163636364+0.972727273i 0.001474201+0.000245700i −0.162162162−0.027027027i
0.001474201+0.000245700i −0.163636364+0.972727273i −0.162162162−0.027027027i
−0.162162162−0.027027027i −0.162162162−0.027027027i −0.324324324+1.945945946i


2 0.01

−0.181890640+0.965429514i 0.000745530+0.000603155i −0.181145111−0.033967331i
0.000745530+0.000603155i −0.181890640+0.965429514i −0.181145111−0.033967331i
−0.181145111−0.033967331i −0.181145111−0.033967331i −0.362290222+1.932065338i


3 0.27

−0.183837862+0.964626792i 0.000683710+0.000619978i −0.183154152−0.034753230i
0.006837101+0.000619978i −0.183837862+0.964626792i −0.183154152−0.034753230i
−0.183154152−0.034753230i −0.183154152−0.034753230i −0.366308303+1.930493539i


4 2.65

−0.184053419+0.964537638i 0.000676988+0.000621565i −0.183376430−0.034840796i
0.000676988+0.000621565i −0.1840534189+0.964537638i −0.183376430−0.034840796i
−0.183376430−0.034840796i −0.183376430−0.034840796i −0.366752861+1.930318407i


5 38.37

−0.184077360+0.964527733i 0.000676243+0.000621738i −0.183401117−0.034850529i
0.000676243+0.000621738i −0.184077360+0.964527733i −0.183401117−0.034850529i
−0.183401117−0.034850529i −0.183401117−0.034850529i −0.366802234+1.930298942i]


6 398.04

−0.1840800120+0.964526632i 0.000676160+0.000621757i −0.183403860−0.034851611i
0.000676160+0.000621757i −0.1840800120+0.964526632i −0.183403860−0.034851611i
−0.183403860−0.034851611i −0.183403860−0.034851611i −0.366807719+1.930296779i


7 3429.78

 −0.184080315+0.96452651i 0.000676151+0.000621759i −0.183404164−0.034851731i
0.000676151+0.000621759i −0.184080315+0.96452651i −0.183404164−0.034851731i
−0.183404164−0.034851731i −0.183404164−0.034851731i −0.366808329+1.930296539i


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n Time Approximation

0 0.01


i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 3i



1 0.01


−0.163639+0.972727i 0.000739+0.000123i 0.00073859+0.000123i −0.162162−0.027027i
0.000739+0.000123i −0.163639+0.972727i 0.000739+0.000123i −0.162162−0.027027i
0.000739+0.000123i 0.000739+0.000123i −0.163639+0.972727i −0.162162−0.027027i
−0.162162−0.027027i −0.162162−0.027027i −0.162162−0.027027i −0.486486+2.918919i



2 0.02


−0.181893+0.96543i 0.000374+0.000301i 0.000374+0.000301i −0.181145−0.033967i
0.000374+0.000301i −0.181893+0.965430i 0.000374+0.000301i −0.181145−0.033967i
0.000374+0.000301i 0.000374+0.000301i −0.181893+0.96543i −0.181145−0.033967i
−0.181145−0.033967i −0.181145−0.033967i −0.181145−0.033967i −0.543435+2.898098i



3 .48


−0.18384+0.964628i 0.000343+0.00031i 0.000343+0.00031i −0.183154−0.034753i
0.000343+0.00031i −0.18384+0.964628i 0.000343+0.00031i −0.183154−0.034753i
0.000343+0.00031i 0.000343+0.00031i −0.18384+0.964628i −0.183154−0.034753i

−0.183154−0.034753i −0.183154−0.034753i −0.183154−0.034753i −0.549462+2.89574i



4 5.70


−0.18384+0.964628i 0.000343+0.00031i 0.000343+0.00031i −0.183154−0.034753i
0.0003437+0.00031i −0.18384+0.964628i 0.000343+0.00031i −0.183154−0.034753i
0.000343+0.00031i 0.000343+0.00031i −0.18384+0.964628i −0.183154−0.034753i

−0.183154−0.034753i −0.183154−0.034753i −0.183154−0.034753i −0.549462+2.89574i



5 89.00


−0.184079+0.964529i 0.000339+0.000310i 0.000339+0.000310i −0.183401−0.034851i
0.000339+0.000310i −0.184079+0.964529i 0.000339+0.0003103i −0.183401−0.034851i
0.000339+0.000310i 0.000339+0.000310i −0.184079+0.964529i −0.183401−0.034851i

−0.183401−0.0348518i −0.183401−0.034851i −0.183401−0.0348512i −0.550203+2.895448i



6 846.84


−0.184082+0.9645278i 0.0003396+0.000310i 0.000339+0.000310i −0.183404−0.034852i

0.000339+0.000310i −0.184082+0.964527i 0.000339+0.000310i −0.183404−0.034852i
0.000339+0.000310i 0.000339+0.000310i −0.184082+0.964527i −0.183404−0.034852i
−0.183404−0.034852i −0.1834044−0.034852i −0.183404−0.0348512i −0.550212+2.895445i



7 7997.04


−0.184082+0.964527i 0.000339+0.000310i 0.000339+0.000310i −0.1834043−0.03485125i
0.000339+0.000310i −0.184082+0.964527i 0.000339+0.0003105i −0.1834041−0.0348512i
0.000339+0.000310i 0.000339+0.000310i −0.184082+0.964527i −0.183404−0.034852i
−0.183404−0.034852i −0.183404−0.034852i −0.183404−0.034852i −0.550212+2.895445i


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n Time Approximation

0 0.01


i 0 0 0 0
0 i 0 0 0
0 0 i 0 0
0 0 0 i 0
0 0 0 0 4i



1 0.01


−0.163639+0.972727i 0.000737+0.000123i 0.000003 0.000737+0.000123i −0.162162−0.027027i
0.000737+0.000123i −0.163639+0.972727i 0.000737+0.000123i 0.000003 −0.162162−0.027027i

0.000003 0.000737+0.000123i −0.163639+0.972727i 0.000737+0.000123i −0.162162−0.027027i
0.000737+0.000123i 0.000003 0.000737+0.000123i −0.163639+0.972727i −0.162162−0.027027i
−0.162162−0.027027i −0.162162−0.027027i −0.162162−0.027027i −0.162162−0.027027i −0.648649+3.891892i



2 0.03


−0.181893+0.96543i 0.000373+0.000302i 0.000002−0.000001i 0.0003731+0.000303i −0.181145−0.033967i
0.000373+0.000302i −0.181893+0.96543i 0.000373+0.000302i 0.000002−0.000001i −0.181145−0.033967i
0.000002−0.000001i 0.000373+0.000302i −0.181893+0.965430i 0.000373+0.000302i −0.181145−0.033967i
0.000373+0.000302i 0.000002−0.000001i 0.000373+0.000302i −0.1818938+0.96543i −0.181145−0.033967i
−0.181145−0.033967i −0.181145−0.033967i −0.181145−0.033967i −0.181145−0.033967i −0.72458+3.864131i



3 0.69


−0.18384+0.964628i 0.000342+0.00031i 0.000002−0.0000001i 0.000342+0.00031i −0.183154−0.034753i
0.000342+0.00031i −0.18384+0.964628i 0.000342+0.00031i 0.000002−0.000001i −0.183154−0.034753i

0.000002−0.000001i 0.000342+0.00031i −0.18384+0.964628i 0.000342+0.00031i −0.183154−0.034753i
0.000342+0.00031i 0.000002−0.000001i 0.000342+0.00031i −0.18384+0.964628i −0.183154−0.034753i

−0.183154−0.034753i −0.183154−0.034753i −0.183154−0.034753i −0.183154−0.034753i −0.732617+3.860987i



4 9.02


−0.184055+0.964538i 0.000338+0.000311i 0.000002−0.000001i 0.000338+0.000311i −0.183376−0.034841i
0.000338+0.000311i −0.184055+0.964538i 0.000338+0.000311i 0.000002−0.000001i −0.183376−0.034841i
0.000001−0.000001i 0.000338+0.000311i −0.184055+0.964538i 0.000338+0.000311i −0.183376−0.034841i
0.000338+0.000311i 0.000001−0.000001i 0.000338+0.000311i −0.184055+0.964538i −0.183376−0.034841i
−0.183376−0.034841i −0.183376−0.034841i −0.183376−0.034841i −0.183376−0.034841i −0.733506+3.860637i



5 94.25


−0.184079+0.964529i 0.000338+0.000311i 0.000001−0.000001i 0.000338+0.000311i −0.183401−0.034851i
0.000338+0.000311i −0.184079+0.964529i 0.000338+0.000311i 0.000002−0.000001i −0.183401−0.034851i
0.000002−0.000001i 0.000338+0.000311i −0.184079+0.964529i 0.000338+0.000311i −0.183401−0.034851i
0.000338+0.000311i 0.000002−0.000001i 0.000338+0.000311i −0.184079+0.964529i −0.183401−0.034851i
−0.183401−0.034851i −0.183401−0.034851i −0.183401−0.034851i −0.183401−0.034851i −0.733604+3.860598i



6 1051.54


−0.184082+0.964527i 0.000338+0.000311i 0.000002−0.000001i 0.000338+0.000311i −0.183404−0.034852i
0.000338+0.000311i −0.184082+0.964527i 0.000338+0.000311i 0.000002−0.000001i −0.183404−0.034852i
0.000002−0.000001i 0.000338+0.000311i −0.184082+0.964527i 0.000338+0.000311i −0.183404−0.034852i
0.000338+0.000311i 0.000002−0.000001i 0.000338+0.000311i −0.184082+0.964527i −0.183404−0.034852i
−0.183404−0.034852i −0.183404−0.034852i −0.183404−0.034852i −0.183404−0.034852i −0.733615+3.860594i



7 12739.99


−0.184082+0.964527i 0.000338+0.000311i 0.000002−0.000001i 0.000338+0.000311i −0.183404−0.034852i
0.000338+0.000312i −0.184082+0.964527i 0.000338+0.000311i 0.000002−0.000001i −0.183404−0.034852i
0.000002−0.000001i 0.000338+0.000311i −0.184082+0.964527i 0.000338+0.000311i −0.183404−0.034852i
0.000338+0.000311i 0.000002−−0.000001i 0.000338+0.000311i −0.184082+0.964527i −0.183404−0.034852i
−0.183404−0.034852i −0.183404−0.034852i −0.183404−0.034852i −0.183404−0.034852i −0.733617+3.860593i


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genus 3, 4, and 5

Our questions of interest were:
Are the curves hyperelliptic?

This question is tied to the vanishing of even theta constants
When g = 3, we found that there is one vanishing even theta constant
When g = 4, we found that there are 10 vanishing even theta constants
When g = 5, we found more than 10 vanishing even theta constants

Conjecture (Çelik-Fairchild-M., 2022)

The surface Jg is hyperelliptic for g = 3,4,5.

Are the approximating Riemann matrices (for g = 4,5 in the Schottky
locus?)

When g = 4 yes, when g = 5 they are within the weak Schottky locus.
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Thank you!
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