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The Kadomtsev-Petviashvili equation

The KP equation is a PDE
that describes the motion of
water waves

∂

∂x

(
4pt −6ppx −pxxx

) = 3pyy

where p = p(x,y, t)
Taken in Nuevo Vallarta, Mexico by Mark J. Ablowitz
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Connection to Algebraic Curves

We seek solutions of the form

p(x,y, t) = 2
∂2

∂x2 logτ(x,y, t)

where τ(x,y, t) satisfies the Hirota’s differential equation

ττxxxx − 4τxxxτx + 3τ2
xx + 4τxτt − 4ττxt + 3ττyy −3τ2

y = 0

One can construct τ-functions from an algebraic curve C of genus g
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Connection to Algebraic Curves

Definition
The Riemann theta function is the complex analytic function

θ = θ(z |B) = ∑
c∈Zg

exp

[
1

2
cT Bc +cT z

]
where z ∈Cg and B is a Riemann matrix, a g ×g symmetric matrix
normalized to have negative definite real part.
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Connection to Algebraic Curves

In 1997, Krichever proved that the KP equation has solutions of the form

p(x,y, t) = 2
∂2

∂x2 logθ(ux+vy+wt,B)

for certain vectors u = (u1, . . . ,ug ),v = (v1, . . . ,vg ),w = (w1, . . . ,wg ) ∈Cg .

Now, for a specific curve C of genus g with Riemann matrix B, we can look
for τ of the form

τ(x,y, t) = θ(ux+vy+wt,B).
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Connection to Algebraic Curves

Consider (u1, . . . ,ug ,v1, . . . ,vg ,w1, . . . ,wg ) as a point in WP3g−1 such that

deg(ui) = 1, deg(vi) = 2, deg(wi) = 3 for i = 1,2, . . . ,g

Definition (Agostini-Çelik-Sturmfels, 2020)

The Dubrovin threefold DC comprises all points (u,v,w) in WP3g−1 such
that τ(x,y, t) satisfies the Hirota’s differential equation.
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Soliton Solutions

Fix k < n and a vector of parameters κ= (κ1,κ2, . . . ,κn) ∈Rn and consider

τ(x,y, t) = ∑
I∈([n]

k )
pI ·

∏
i,j∈I
i<j

(κj −κi) ·exp
[

x ·∑
i∈I
κi + y ·∑

i∈I
κ2

i + t ·∑
i∈I
κ3

i

]

Proposition (Sato)

The function τ is a solution to Hirota’s differential equation if and only if
the point p = (pI )I∈([n]

k ) lies in the Grassmannian Gr(k,n).

Definition
We define a (k,n)-soliton to be any function τ(x,y, t) where κ ∈Rn and
p ∈ Gr(k,n).
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Main Idea

We study solutions to the KP equations arising from algebraic curves
defined over a non-archimedean field K, like Q(ε) or C{{ε}}.

A curve over K can be thought of as a family of curves depending on a
parameter ε

θ(z) = ∑
c∈Zg

exp

[
1

2
cT Bc +cT z

]
 θC (x) = ∑

c∈C

ac exp
[
cT z

]
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Main Idea

We study solutions to the KP equations arising from algebraic curves
defined over a non-archimedean field K, like Q(ε) or C{{ε}}.

For ε→ 0

The theta function becomes a finite sum of exponentials
The function

p(x,y, t) = 2
δ2

δx2 logτ(x,y, t)

becomes a soliton solution of the KP equation
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Degenerations of Theta Functions

Let X be a smooth curve of genus g over K. The metric graph is Trop(X).

The metric graph Γ= (V ,E) of a
genus 2 hyperelliptic curve

H1(Γ,Z) = 〈γ1, . . . ,γg〉
is a free abelian group of rank g

e := |E|
Λ := g ×e matrix whose i-th row records the coordinate of γi with
respect to the standard basis of Ze

∆ := diagonal e×e matrix that records edge lengths of the metric
graph.

Definition
The Riemann matrix of Γ= (V ,E) is

Q =Λ∆ΛT
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Example (g=2)

Consider X := { y 2 = f (x ) } where

f (x) = (x−1)(x−1−ε)(x−2)(x−2−ε)(x−3)(x−3−ε)

The six roots determine a subtree with six leaves which has a unique
hyperelliptic covering by a metric graph of genus 2

1

1
1 2

2

2

From the graph we can read off the tropical Riemann matrix Q

Q =Λ∆ΛT =
[

1 −1 0
0 1 −1

]2 0 0
0 2 0
0 0 2

 1 0
−1 1

0 −1

=
[

4 −2
−2 4

]
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Degenerations of Theta Functions

Consider

Bε =−1

ε
Q+R(ε)

Fix a ∈Rg

θ(z+ 1

ε
Qa |Bε) = ∑

c∈Zg

exp

[
− 1

2ε
cT Qc+ 1

ε
cT Qa

]
·exp

[
1

2
cT R(ε)c+cT z

]

Let ε→ 0. This converges provided

cT Qc−2cT Qa ≥ 0 for all c ∈Zg

or equivalently

aT Qa ≤ (a−c)T Q(a−c) for all c ∈Zg
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Voronoi and Delaunay

The condition

aT Qa ≤ (a−c)T Q(a−c) for all c ∈Zg

holds if and only if a belongs to the Voronoi cell for Q

For a in the Voronoi cell for Q,
consider the associated Delaunay set:

Da,Q = {
c ∈Zg : aT Qa = (a−c)T Q(a−c)

}
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θ(z+ 1

ε
Qa |Bε) = ∑

c∈Zg

exp

[
− 1

2ε
cT Qc+ 1

ε
cT Qa

]
·exp

[
1

2
cT R(ε)c+cT z

]

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)

Fix a in the Voronoi cell of the tropical Riemann matrix Q. For ε→ 0, the
series

θ(z+ 1

ε
Qa |Bε)

converges to the theta function supported on the Delaunay set C =Da,Q,
namely

θC (x) = ∑
c∈C

ac exp
[
cT z

]
, where ac = exp

[
1

2
cT R(0)c

]
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Example (g=2)

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)

Fix a in the Voronoi cell of Q and let C =Da,Q be the Delaunay set. As
ε→ 0,

θ(z+ 1

ε
Qa |Bε) → θC (x) = ∑

c∈C

ac exp
[
cT z

]
,

where ac = exp
[1

2 cT R(0)c
]

Example

For Q =
[

1 0
0 1

]
C =Da,Q = {(0,0), (1,0), (0,1), (1,1)}

The associated theta function is

θC = a00 +a10 exp[z1]+a01 exp[z2]+a11 exp[z1 +z2]
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The Hirota Variety

Let C = {c1,c2, . . . ,cm} ⊂Zg

θC (z) = a1 exp[cT
1 z ] + a2 exp[cT

2 z ] + ·· · + am exp[cT
mz ]

Consider

τ(x,y, t) = θC (ux+vy+wt) =
m∑

i=1
ai exp

[( g∑
j=1

cijuj
)

x +( g∑
j=1

cijvj
)

y +( g∑
j=1

cijwj
)

t
]

Definition

The Hirota variety HC consists of all points
(
a, (u,v,w)

)
in (K∗)m×WP3g−1

such that τ(x,y, t) satisfies Hirota’s differential equation
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Polynomials defining the Hirota Variety

Remark
Hirota’s differential equation can be written via the Hirota differential
operators as

P(Dx,Dy,Dt)τ•τ= 0

where P(x,y, t) = x4 −4xt +3y2 gives the soliton dispersion relation

For any two indices k,` in {1, . . . ,m}

Pk`(u,v,w) := P
(

(ck −c`) ·u, (ck −c`) ·v, (ck −c`) ·w
)

is a hypersurface in WP3g−1
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Polynomials defining the Hirota Variety

The polynomials defining HC correspond to points in

C [2] = {
ck +c` : 1 ≤ k < `≤ m

} ⊂ Zg

Definition

A point d in C [2] is uniquely attained if there exists precisely one index pair
(k,`) such that ck +c` = d. In that case, (k,`) is a unique pair.
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Polynomials defining the Hirota Variety

Theorem (Agostini-Fevola-M.-Sturmfels)

The Hirota variety HC is defined by the quartics

Pk`(u,v,w) := P
(

(ck −c`) ·u, (ck −c`) ·v, (ck −c`) ·w
)

for all unique pairs (k,`) and by the polynomials∑
1≤k<`≤m
ck+c`=d

Pk`(u,v,w)aka`

for all non-uniquely attained points d ∈C [2].
If all points in C [2] are uniquely attained then HC is defined by the

(m
2

)
quartics Pk`(u,v,w).
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Example (The Square)

Let g = 2 and C = {0,1}2

C [2] = {(0,1), (1,0), (1,1), (1,2), (2,1)}

There are four unique pairs (k,`)

P13 = P24 = u4
1 −4u1w1 +3v2

1

P12 = P34 = u4
2 −4u2w2 +3v2

2

The point d = (1,1) is not uniquely attained in C [2]

P(u1 +u2,v1 +v2,w1 +w2)a00a11 + P(u1 −u2,v1 −v2,w1 −w2)a01a10

For any point in HC ⊂ (K∗)4×WP5, we can write τ(x,y, t) as a (2,4)-soliton

A =
[

1 1 0 0
0 0 1 1

]
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Example (The Cube)

Let g = 3 and consider the tropical degeneration of a smooth plane quartic
C to a rational quartic

θC = a000 + a100 exp[z1] + a010 exp[z2] + a001 exp[z3] + a110 exp[z1 +z2]

+ a101 exp[z1 +z3] + a011 exp[z2 +z3] + a111 exp[z1 +z2 +z3].

We compute the Hirota variety in (K∗)8 ×WP8.
The set C [2] consists of 19 points.

12 pts uniquely attained, one for each edge of the cube → quartics
u4

j −4ujwj +3v2
j , one for each edge direction ck −c`

6 pts attained twice → contribute 6 equations, one for each facet
(1,1,1) four times → P(u1 +u2 +u3, v1 +v2 +v3, w1 +w2 +w3 )a000a111

+P(u1 +u2 −u3, v1 +v2 −v3, w1 +w2 −w3 )a001a110

+P(u1 −u2 +u3, v1 −v2 +v3, w1 −w2 +w3 )a010a101

+P(−u1+u2+u3, −v1+v2+v3, −w1+w2+w3 )a100a011

Yelena Mandelshtam (UC Berkeley) KP Solitons from Tropical Limits July 12, 2021 20 / 29



Example (The Cube)

Let g = 3 and consider the tropical degeneration of a smooth plane quartic
C to a rational quartic

θC = a000 + a100 exp[z1] + a010 exp[z2] + a001 exp[z3] + a110 exp[z1 +z2]

+ a101 exp[z1 +z3] + a011 exp[z2 +z3] + a111 exp[z1 +z2 +z3].

We compute the Hirota variety in (K∗)8 ×WP8.
The set C [2] consists of 19 points.

12 pts uniquely attained, one for each edge of the cube → quartics
u4

j −4ujwj +3v2
j , one for each edge direction ck −c`

6 pts attained twice → contribute 6 equations, one for each facet
(1,1,1) four times → P(u1 +u2 +u3, v1 +v2 +v3, w1 +w2 +w3 )a000a111

+P(u1 +u2 −u3, v1 +v2 −v3, w1 +w2 −w3 )a001a110

+P(u1 −u2 +u3, v1 −v2 +v3, w1 −w2 +w3 )a010a101

+P(−u1+u2+u3, −v1+v2+v3, −w1+w2+w3 )a100a011

Yelena Mandelshtam (UC Berkeley) KP Solitons from Tropical Limits July 12, 2021 20 / 29



The Sato Grassmannian: Some Intuition

Classical Grassmannian Gr(k,n)

parametrizes k-dimensional subspaces of Kn

projective variety in P(n
k)−1, cut out by quadratic relations known as

Plücker relations
Plücker coordinates pI = cλ are indexed by k-element subsets of [n],
identified with partitions λ that fit into a k× (n−k) rectangle.These
are the maximal minors of a k×n matrix M of unknowns

The Sato Grassmannian (SGM)
the zero set of the Plücker relations in the unknowns cλ, where we
now drop the constraint that λ fits into a k× (n−k)-rectangle.
we now allow arbitrary partitions λ

The SGM is a device for encoding all solutions to the KP equation!
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The Sato Grassmannian

Let V =K((z)) and consider the natural projection map

π : V →K[z−1]

Definition
Points in the Sato Grassmannian SGM correspond to K-subspaces U ⊂ V
such that

dimKerπ|U = dimCokerπ|U <∞

How do we represent a point in SGM?
For any basis (f1, f2, f3, . . . ) of U ∈ SGM

fj(z) =
+∞∑

i=−∞
ξi,jz

i+1.

Then U is the column span of the infinite matrix ξ= (ξi,j).
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The Sato Grassmannian

A subspace U of V gives a point in SGM if and only if there is a basis
whose corresponding matrix has the shape

ξ =



. . .
...

...
...

... · · · ...
· · · 1 0 0 0 · · · 0
· · · ∗ 1 0 0 · · · 0
· · · ∗ ∗ ξ−`,` ξ−`,`−1 · · · ξ−`,1

· · · ∗ ∗ ξ−`+1,` ξ−`+1,`−1 · · · ξ−`+1,1
...

...
...

... · · · ...
· · · ∗ ∗ ξ−1,` ξ−1,`−1 · · · ξ−1,1

· · · ∗ ∗ ξ0,` ξ0,`−1 · · · ξ0,1

· · · ∗ ∗ ξ1,` ξ1,`−1 · · · ξ1,1
...

...
...

... · · · ...


.

Yelena Mandelshtam (UC Berkeley) KP Solitons from Tropical Limits July 12, 2021 23 / 29



Connections of the SGM to solutions to the KP equation

Definition
A Maya diagram is an infinite sequence M = (m1,m2,m3, . . . ) of integers
m1 > m2 > m3 > . . . such that mi =−i for all i large enough.

Maya diagrams correspond to partitions λ= (λ1,λ2, . . . ,λr)
It makes sense to define

ξλ := ξM = det(ξmi,j)

The τ-function associated to ξ is

τ(t1, t2, t3, . . . ) =∑
λ

ξλσλ(t1, t2, t3, . . . )

Theorem (Sato)

The function τ(t ;ξ) is a solution to the KP hierarchy. Conversely, any
solution of the KP hierarchy is of this form.
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Soliton Solutions & Sato’s Solutions

Recall

τ(x,y, t) = ∑
I∈([n]

k )
pI ·

∏
i,j∈I
i<j

(κj −κi) ·exp
[

x ·∑
i∈I
κi + y ·∑

i∈I
κ2

i + t ·∑
i∈I
κ3

i

]
and

τ(t1, t2, t3, . . . ) =∑
λ

ξλσλ(t1, t2, t3, . . . )

Proposition (Agostini-Fevola-M.-Sturmfels)

The (k,n)-soliton has the following expansion into Schur polynomials

τ(x,y, t) = ∑
λ1≥λ2≥λ3≥0

cλ ·σλ(x,y, t) , where cλ =
∑

I∈([n]
k )

pI ·∆λ(κi, i ∈ I)
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τ(x,y, t) = ∑
λ1≥λ2≥λ3≥0

cλ ·σλ(x,y, t) , where cλ =
∑

I∈([n]
k )

pI ·∆λ(κi, i ∈ I)
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Tau Functions from Algebraic Curves

Let X be a smooth projective curve of genus g defined over a field K.
Fix a divisor D of degree g −1 on X and a point p ∈ X

For m < n

H0(X ,D+mp) ⊆ H0(X ,D+np) ⊆ ·· · ⊆ H0(X ,D+∞p)

Let z denote a local coordinate on X at p and m = ordp(D)

ι : H0(X ,D+∞p) → V , s = ∑
n∈Z

snzn 7→ ∑
n∈Z

snzn+m+1

Proposition (Segal-Wilson)

The space U = ι(H0(X ,D+∞p)) ⊂ V lies in SGM.
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The case of genus 2 hyperelliptic curves

Let
X = {

y2 = (x−λ1)(x−λ2) · · · (x−λ6)
}

Let p be one of the two preimages of p∞ under the double cover X →P1.
Let z = 1

x around p

y = ±
√

(x−λ1) · · · (x−λ6) = ± 1

z3 ·
+∞∑
n=0

αnzn

We consider three kinds of divisors:

D0 = p , D1 = p1, D2 = p1 +p2 −p

For m ≥ 3, consider the functions
gm(x) = ∑m

j=0αjxm−j

fm(x,y) = 1
2

(
xm−3y+gm(x)

)
hj(x,y) = f3(x,y)−f3(cj ,−yj)

x−cj
= y+g3(x)−(−yj+g3(cj))

2(x−cj)
for j = 1,2
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We write Ui = ι(H0(X ,Di +∞p))

Proposition (Nakayashiki)

The set {1, f3, f4, f5, . . .} is a basis of U0, the set {1, f3, f4, f5, . . .}∪ {h1} is a basis
of U1, and {1, f3, f4, f5, . . .}∪ {h1,h2} is a basis of U2.

Computations
We implemented the method in Maple for D0 = p on hyperelliptic curves
over K=Q(ε)

τ[n] :=
n∑

i=1

∑
λ`i

ξλσλ(x,y, t),

You can find it here:

https : //mathrepo.mis.mpg.de
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https://mathrepo.mis.mpg.de/KPSolitonsFromTropicalLimits/index.html


Thank you!

Yelena Mandelshtam (UC Berkeley) KP Solitons from Tropical Limits July 12, 2021 29 / 29


