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The Kadomtsev-Petviashvili equation

The KP equation is a PDE
that describes the motion of
water waves

0
EC (4pt —6ppx— pxxx) = 3pyy

where p= p(x,y,1)
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Connection to Algebraic Curves

We seek solutions of the form

62
plx,y 1) = Za—xz logt(x,y,1)

where 7(x,y, 1) satisfies the Hirota's differential equation

TTyoxr — AT xoex T + Schx + AT T — AT Ty + 3TTyy—3TJ2, =0

@ One can construct 7-functions from an algebraic curve C of genus g

Yelena Mandelshtam (UC Berkeley) KP Solitons from Tropical Limits July 12, 2021 2/29



Connection to Algebraic Curves

Definition
The Riemann theta function is the complex analytic function

1
EcTBc +clz

6=0@zlB = ) exp

ceZ8

where ze C8 and B is a Riemann matrix, a g x g symmetric matrix
normalized to have negative definite real part.
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Connection to Algebraic Curves

In 1997, Krichever proved that the KP equation has solutions of the form

52
px,y, 1) = 2@10g6(ux+vy+wt, B)

for certain vectors u= (uy,..., ug),v=(vy,...,vg),w=(w,..., W) € C8.
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Connection to Algebraic Curves

In 1997, Krichever proved that the KP equation has solutions of the form

62
px,y, 1) = 2@10g9(ux+vy+wt, B)

for certain vectors u= (uy,..., ug),v=(vy,...,vg),w=(w,..., W) € C8.

Now, for a specific curve C of genus g with Riemann matrix B, we can look

for T of the form
T(x,y, 1) = 0(ux+vy+wt, B).
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Connection to Algebraic Curves

Consider (uy, ..., Ug, V1,..., Vg, Wi, ..., Wg) as a point in WP38~1 such that

deg(u;) =1, deg(v)=2, deg(w;)=3 fori=1,2,...,8
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Connection to Algebraic Curves

Consider (uy, ..., Ug, V1,..., Vg, Wi, ..., Wg) as a point in WP38~1 such that

deg(u) =1, deg(v)=2, deg(w)=3 fori=1,2,...,8

Definition (Agostini-Celik-Sturmfels, 2020)

The Dubrovin threefold 2 comprises all points (u,v,w) in WP38~! such
that 7(x,y,1) satisfies the Hirota's differential equation.
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Soliton Solutions

Fix k< n and a vector of parameters x = (k1,k2,...,k) € R” and consider

Ty = ) pz-H(Kj—Ki)-eXp[X'ZKiﬂ"ZK?+t'zk?]

[ ijel j j j
1e("h i1<j iel iel iel
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Soliton Solutions

Fix k< n and a vector of parameters x = (k1,k2,...,k) € R” and consider

Ty = ) PI'H(Kj_Ki)'eXp[x'ZKi"'.V'ZK?+t'ZK?]

Lo . ; .
Ie([z]) tiffj i€l i€l i€l
Proposition (Sato)

The function T is a solution to Hirota's differential equation if and only if
the point p= (pI)IE([n]) lies in the Grassmannian Gr(k, n).
k

Definition
We define a (k, n)-soliton to be any function 7(x,y, ) where x € R” and
peGr(k, n).

Yelena Mandelshtam (UC Berkeley) KP Solitons from Tropical Limits July 12, 2021 6/29



Main ldea

We study solutions to the KP equations arising from algebraic curves
defined over a non-archimedean field K, like Q(e) or C{{e}}.

A curve over K can be thought of as a family of curves depending on a
parameter €

’t?‘—'o ‘(’,:O

1
EcTBc +clz

0(z) = Z exp

ce”Z8

SR ERY acexp[cTz]
ceb

.
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Main ldea

We study solutions to the KP equations arising from algebraic curves
defined over a non-archimedean field K, like Q(e) or C{{e}}.

Fore—0

@ The theta function becomes a finite sum of exponentials

@ The function )

0
px,y, 8 = 2—logr(x 1)

becomes a soliton solution of the KP equation
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Degenerations of Theta Functions

Let X be a smooth curve of genus g over K. The metric graph is Trop(X).

(:}-(:) HT,2)={y1,.-,yg

The metric graph T'=(V,E) of a is a free abelian group of rank g
genus 2 hyperelliptic curve
e e:=|E|
@ A := gxe matrix whose i-th row records the coordinate of y; with

respect to the standard basis of 7°
@ A := diagonal e x e matrix that records edge lengths of the metric

graph.
Definition
The Riemann matrix of T = (V,E) is
Q=AAAT
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Example (g=2)
Consider X :=1{y? = f(x)} where

fO=x-Dx-1-6)(x-2)(x-2—-€)(x—-3)(x—3—¢€)

The six roots determine a subtree with six leaves which has a unique
hyperelliptic covering by a metric graph of genus 2
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Example (g=2)
Consider X :=1{y? = f(x)} where

fO=x-Dx-1-6)(x-2)(x-2—-€)(x—-3)(x—3—¢€)

The six roots determine a subtree with six leaves which has a unique
hyperelliptic covering by a metric graph of genus 2

From the graph we can read off the tropical Riemann matrix Q

1 0 4
S Bl B
0 -1
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Degenerations of Theta Functions

Consider
1
Be=—gQ+R(€)
Fix ae RS
1 L 7 L 7 L r T
6(z+-Qa|B) = ) exp|-—c Qc+—c Qa|-exp|-c R(e)c+c'z
€ cezs 2e € 2
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Degenerations of Theta Functions
Consider

B. = —1Q+ R(e)
€

Fix ae RS

1 1 1
O(z+—-Qa|B) = Z exp —z—cTQc+—cTQa -exp
€ € €

ceZ8

1
EcTR(e)c+ c'z

Let € — 0. This converges provided

c’Qc-2¢"Qa=0 for all ce 78

or equivalently

aTQa < (a—c)TQ(a—c) for all ce 78
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Voronoi and Delaunay

The condition
a’Qa<@-co’Qa-c forall cezs

holds if and only if a belongs to the Voronoi cell for Q

For a in the Voronoi cell for Q,
consider the associated Delaunay set:

Dag = {ceZ8:a"Qa = (a-c)" Qa—c)
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1 1 1
6(z+-Qa|B,) = Z exp ——cTQc+—cTQa
€ 2¢€ €

1
—cTR(e)c+ c'z
ceZ8 2

-exp

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)

Fix a in the Voronoi cell of the tropical Riemann matrix Q. For € — 0, the
series

1
0(z+ EQaIBg)

converges to the theta function supported on the Delaunay set € = .,
namely

L
—c" R(0)c
5 (0)

Oe(x) = ). acexp[cTz], where ac = exp
ce6
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Example (g=2)

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)

Fix a in the Voronoi cell of Q and let € =2, be the Delaunay set. As
€—0,

1
0(z+ EQaIBe) —0¢x = ) acexp[c’z],
CcEC
where ac = exp [%CTR(O)C]
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Example (g=2)

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)

Fix a in the Voronoi cell of Q and let € =2, be the Delaunay set. As
€—0,

1
0(z+ EQaIBe) —0¢x = ) acexp[c’z],
CcEC
where ac = exp [%CTR(O)C]

Example
1 0
For Q= [0 1]

€ =%a,0=1{0,0),(1,0),(0,1), (1, 1)}

The associated theta function is

O = apo + a0 explz1] + do1 explzz] + a1 explz + 2]
Yelena Mandelshtam (UC Berkeley)

v
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The Hirota Variety

Let € ={c1,co,...,C;n} = Z8
O¢(z) = o exp[csz] + agexp[csz] + e+ amexp[c,Tnz]

Consider

m g g g
1%y, 1) = Ogux+vy+wt) = aiexp[(z cijiup) x+ () cijvj) y + () cijwy) t]
i=1 =1 =1 =1
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The Hirota Variety

Let € ={c1,co,...,C;n} = Z8
O¢(z) = o exp[csz] + agexp[csz] + e+ amexp[c,Tnz]

Consider

m g g 8
1%y, 1) = Ogux+vy+wt) = aiexp[(z cijiup) x+ () cijvj) y + () cijwy) t]
i=1 =1 =1 =1

Definition
The Hirota variety 7 consists of all points (a, (u,v,w)) in (K*)™ x WP3§~1
such that 7(x,y, 1) satisfies Hirota's differential equation
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Polynomials defining the Hirota Variety

Remark
Hirota's differential equation can be written via the Hirota differential

operators as
P(Dy, Dy, D)T 7 =0

where P(x,y,t) = x* —4xt+3) gives the soliton dispersion relation
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Polynomials defining the Hirota Variety

Remark

Hirota's differential equation can be written via the Hirota differential
operators as

P(Dy, Dy, D)T*7=0

where P(x,y,1) = 364—4xt+3y2 gives the soliton dispersion relation

For any two indices k, ¢ in {1,..., m}

Pre(u,v,w) := P((ck—cp) 1, (Cx—Cp) -V, (Cx—C7) W)

is a hypersurface in WP3§-1
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Polynomials defining the Hirota Variety

The polynomials defining /¢ correspond to points in
€% = {cp+cp i 1<k<l<m} c 78

Definition

A point d in €% is uniquely attained if there exists precisely one index pair
(k,¢) such that ¢ +c,=d. In that case, (k,¢) is a unique pair.
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Polynomials defining the Hirota Variety

Theorem (Agostini-Fevola-M.-Sturmfels)
The Hirota variety # Is defined by the quartics

Pre(u,v,w) := P((ck—c¢p)-u, (Ck—cp) -V, (€ —Cp) - W)

for all unique pairs (k,€) and by the polynomials

Y. Pre(u,v,w)agay
1<k<l=m
citep =d

for all non-uniquely attained points d € €'?'.

If all points in €'? are uniquely attained then 7 is defined by the (7})
quartics Prp(u,v,w).
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Example (The Square)
Let g=2 and € =1{0,1}?

€% ={0,1),(1,0),(1,1),(1,2),(2,1)}
There are four unique pairs (k,¢)
Pi3=Pyy = Ltzll —4uyuy +3U%

Py =Py = u§—4uZW2 +3V§

The point d=(1,1) is not uniquely attained in €%
P(uy + up, 1 + v, w1 + wo) agpar1 + P(uy — up, 1 — Va2, w1 — W) dp1G1o
For any point in #¢ c (K*)* x WP, we can write 7(x,,1) as a (2,4)-soliton

s

0 011

v
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Example (The Cube)

Let g =3 and consider the tropical degeneration of a smooth plane quartic
C to a rational quartic

O« = apoo + aipoexplz1] + apioexplzz] + apo1 explzs] + aroexplzi + 23]

+ a1 exp[z1 + Zg] + ap11 exp[zz + Zg] + din exp[zl + 2+ Zg].
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Example (The Cube)

Let g =3 and consider the tropical degeneration of a smooth plane quartic
C to a rational quartic

O¢ = agoo + aroo€xplz1] + agioexplzz] + ago1 €xplzs] + arioexplz; + 2]
+ a1 exp[z1 + Zg] + ap11 exp[zz + Zg] + din exp[zl + 2+ Z3].

We compute the Hirota variety in (IK*)® x WP8.
The set €' consists of 19 points.
@ 12 pts uniquely attained, one for each edge of the cube — quartics
u;.l —4ujwj+3v]?, one for each edge direction ¢ —cy
@ 6 pts attained twice — contribute 6 equations, one for each facet
e (1,1,1) four times — P(uj + Up + U3, V1 + Vo + U3, Wy + Wo + W3) dooo 111
+P(uy + up — uz, U1 + V2 — U3, W1 + Wa — W3) Apo1A110
+ P(uy — up + u3, 1 — U2 + U3, W1 — Wa + W3) Ap10G101
+P(—uy+up+us, —v1+1r+03, —W+We+wWs) Aypodont
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The Sato Grassmannian: Some Intuition

Classical Grassmannian Gr(k, n)
@ parametrizes k-dimensional subspaces of K"

o projective variety in P ™1, cut out by quadratic relations known as
Pliicker relations

@ Pliicker coordinates p; = c) are indexed by k-element subsets of [n],
identified with partitions A that fit into a k x (n— k) rectangle. These
are the maximal minors of a kx n matrix M of unknowns

The Sato Grassmannian (SGM)

@ the zero set of the Pliicker relations in the unknowns c;, where we
now drop the constraint that A fits into a k x (n— k)-rectangle.

@ we now allow arbitrary partitions A
The SGM is a device for encoding all solutions to the KP equation!
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The Sato Grassmannian

Let V=K((2)) and consider the natural projection map

7 VoK[z Y

Definition
Points in the Sato Grassmannian SGM correspond to K-subspaces Uc V
such that

dimKermy = dimCoker |y < oo
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The Sato Grassmannian

Let V=K((2)) and consider the natural projection map

7 VoK[z Y

Definition
Points in the Sato Grassmannian SGM correspond to K-subspaces Uc V
such that

dimKermy = dimCoker |y < oo

How do we represent a point in SGM?
For any basis (fi,f,f,...) of UeSGM

+00 )
fila = Z &2t

1=—00

Then U is the column span of the infinite matrix & = (¢;).
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The Sato Grassmannian

A subspace U of V gives a point in SGM if and only if there is a basis
whose corresponding matrix has the shape

1 0 0 0 0
1 0 0 0
* % Sgp  Cgpr 0 g
* % Copie Soprie-1 vt §or41a
¢ = , : ) )
* % $1,0 $-1,01 -1,1
* Lo o1 0 Soa
G o1 0 &1
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Connections of the SGM to solutions to the KP equation
Definition

A Maya diagram is an infinite sequence M = (my, my, ms,...) of integers
my > my > mg > ... such that m;=—i for all i large enough.

@ Maya diagrams correspond to partitions A = (A1, Az,...,4;)
@ |t makes sense to define

$a:=Em = det($m,,))

The 7-function associated to ¢ is

T(t]) t2) t3)«~~) = Zéﬂ.a/l(tl’ t2) t3)-'~)
A
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Connections of the SGM to solutions to the KP equation

Definition
A Maya diagram is an infinite sequence M = (my, my, ms,...) of integers
my > my > mg > ... such that m;=—i for all i large enough.

@ Maya diagrams correspond to partitions A = (A1, Az,...,4;)
@ |t makes sense to define

$a:=Em = det($m,,))

The 7-function associated to ¢ is
T(tl) t2) t3)« -~) = Zéﬂ.a/l(tl’ t2) t3)- ..)
A

Theorem (Sato)

The function t(t;&) is a solution to the KP hierarchy. Conversely, any
solution of the KP hierarchy is of this form.
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Soliton Solutions & Sato's Solutions

Recall
Ty = ) PI'H(Kj_Ki)‘eXp[x'ZKi"'.V'ZK?+t'zk?]
Ie([z]) ll]<€jl iel iel i€l
and

T(f, I, 8,...) = )_Ea0 (11, 12, B3, ...)
A
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Soliton Solutions & Sato's Solutions

Recall

Ty = Y PI'H(Kj_Ki)‘eXp[x’ZKi"'y'ZK?+t'zk?]

[ ijel j j j
Ie( k) i1<j iel i€l iel

and

T(f, I, 8,...) = )_Ea0 (11, 12, B3, ...)
A

Proposition (Agostini-Fevola-M.-Sturmfels)

The (k, n)-soliton has the following expansion into Schur polynomials

Ty = ), a-oaxy, where ci= Y pr-Aakjiel
M=A221320 e ("
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Tau Functions from Algebraic Curves

Let X be a smooth projective curve of genus g defined over a field K.

Fix a divisor D of degree g—1 on X and a point pe X
For m<n

H°(X,D+mp) < H*(X,D+np) <--- < H*(X, D+ cop)

Let z denote a local coordinate on X at p and m = ord,(D)

11 H'(X,D+o0p) — V, s= ) st — ) syttt

neZ nez

Proposition (Segal-Wilson)

The space U= 1(H°(X,D+oop)) c V lies in SGM.
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The case of genus 2 hyperelliptic curves

Let

X =1{y = @=A)x=-22) (x= )}
Let p be one of the two preimages of ps, under the double cover X — P1.
Let z:}c around p

1 +00
y=+VEx-A)(x—Ag) = +—- ) anz"
27 p=0
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The case of genus 2 hyperelliptic curves

Let

X={y=x-A)x-A2) - (x—Ag)}

Let p be one of the two preimages of ps, under the double cover X — P1.

_1
Let z= 1 around p

y=2Vx—=A1)-(x—Ag) = f
We consider three kinds of divisors:
Do = p, Di=p;, De=p1+p2-p
For m= 3, consider the functions
gmx) = i X m=j
fmny) = 3 (" Cy+gn(x)
hixy) = By ==y _ rs0-Cyite@)

X—¢j 2(x—¢p)

Yelena Mandelshtam (UC Berkeley) KP Solitons from Tropical Limits
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We write U; = t(H°(X, D; + cop))
Proposition (Nakayashiki)

The set {1,f3,f1,f5,...} is a basis of Uy, the set {1,f3,f1,f5,...} U{h1} is a basis
of Uy, and {1,f3,fa,f5,...} Uihy, ho} is a basis of Us.

Computations

We implemented the method in Maple for Dy = p on hyperelliptic curves
over K = Q(e)

n
Tn] == ) ) oy,

i=1 i
You can find it here:

https: | | mathrepo.mis.mpg.de

v

Yelena Mandelshtam (UC Berkeley) KP Solitons from Tropical Limits July 12, 2021 28 /29


https://mathrepo.mis.mpg.de/KPSolitonsFromTropicalLimits/index.html

Thank youl
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