KP Solitons from Tropical Limits joint with Agostini D., Fevola C., and Sturmfels B.

Yelena Mandelshtam

University of California, Berkeley

July 12, 2021

The Kadomtsev-Petviashvili equation

The KP equation is a PDE that describes the motion of water waves

$$\frac{\partial}{\partial x} \left(4p_t - 6pp_x - p_{xxx} \right) = 3p_{yy}$$

where p = p(x, y, t)

Taken in Nuevo Vallarta, Mexico by Mark J. Ablowitz

Connection to Algebraic Curves

We seek solutions of the form

$$p(x, y, t) = 2 \frac{\partial^2}{\partial x^2} \log \tau(x, y, t)$$

where $\tau(x, y, t)$ satisfies the Hirota's differential equation

$$\tau \tau_{xxxx} - 4\tau_{xxx}\tau_x + 3\tau_{xx}^2 + 4\tau_x\tau_t - 4\tau\tau_{xt} + 3\tau\tau_{yy} - 3\tau_y^2 = 0$$

• One can construct τ -functions from an algebraic curve C of genus g

2 / 29

Connection to Algebraic Curves

Definition

The Riemann theta function is the complex analytic function

$$\theta = \theta(\mathbf{z} | B) = \sum_{\mathbf{c} \in \mathbb{Z}^g} \exp\left[\frac{1}{2}\mathbf{c}^T B \mathbf{c} + \mathbf{c}^T \mathbf{z}\right]$$

where $\mathbf{z} \in \mathbb{C}^{g}$ and *B* is a Riemann matrix, a $g \times g$ symmetric matrix normalized to have negative definite real part.

In 1997, Krichever proved that the KP equation has solutions of the form

$$p(x, y, t) = 2 \frac{\partial^2}{\partial x^2} \log \theta(\mathbf{u}x + \mathbf{v}y + \mathbf{w}t, B)$$

for certain vectors $\mathbf{u} = (u_1, \dots, u_g), \mathbf{v} = (v_1, \dots, v_g), \mathbf{w} = (w_1, \dots, w_g) \in \mathbb{C}^g$.

In 1997, Krichever proved that the KP equation has solutions of the form

$$p(x, y, t) = 2 \frac{\partial^2}{\partial x^2} \log \theta (\mathbf{u}x + \mathbf{v}y + \mathbf{w}t, B)$$

for certain vectors $\mathbf{u} = (u_1, \dots, u_g), \mathbf{v} = (v_1, \dots, v_g), \mathbf{w} = (w_1, \dots, w_g) \in \mathbb{C}^g$.

Now, for a specific curve C of genus g with Riemann matrix B, we can look for τ of the form

$$\tau(x, y, t) = \theta(\mathbf{u}x + \mathbf{v}y + \mathbf{w}t, B).$$

Connection to Algebraic Curves

Consider $(u_1, \ldots, u_g, v_1, \ldots, v_g, w_1, \ldots, w_g)$ as a point in \mathbb{WP}^{3g-1} such that

 $\deg(u_i) = 1$, $\deg(v_i) = 2$, $\deg(w_i) = 3$ for i = 1, 2, ..., g

5/29

Consider $(u_1, \ldots, u_g, v_1, \ldots, v_g, w_1, \ldots, w_g)$ as a point in \mathbb{WP}^{3g-1} such that

 $\deg(u_i) = 1$, $\deg(v_i) = 2$, $\deg(w_i) = 3$ for i = 1, 2, ..., g

Definition (Agostini-Çelik-Sturmfels, 2020)

The Dubrovin threefold \mathcal{D}_C comprises all points $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ in \mathbb{WP}^{3g-1} such that $\tau(x, y, t)$ satisfies the Hirota's differential equation.

Soliton Solutions

Fix k < n and a vector of parameters $\kappa = (\kappa_1, \kappa_2, \dots, \kappa_n) \in \mathbb{R}^n$ and consider

$$\tau(x, y, t) = \sum_{I \in \binom{[n]}{k}} p_I \cdot \prod_{i, j \in I} (\kappa_j - \kappa_i) \cdot \exp\left[x \cdot \sum_{i \in I} \kappa_i + y \cdot \sum_{i \in I} \kappa_i^2 + t \cdot \sum_{i \in I} \kappa_i^3\right]$$

6/29

Soliton Solutions

Fix k < n and a vector of parameters $\kappa = (\kappa_1, \kappa_2, \dots, \kappa_n) \in \mathbb{R}^n$ and consider

$$\tau(x, y, t) = \sum_{I \in \binom{[n]}{k}} p_I \cdot \prod_{i \neq i \atop i < j} (\kappa_j - \kappa_i) \cdot \exp\left[x \cdot \sum_{i \in I} \kappa_i + y \cdot \sum_{i \in I} \kappa_i^2 + t \cdot \sum_{i \in I} \kappa_i^3\right]$$

Proposition (Sato)

The function τ is a solution to Hirota's differential equation if and only if the point $p = (p_I)_{I \in \binom{[n]}{\nu}}$ lies in the Grassmannian Gr(k, n).

Definition

We define a (k, n)-soliton to be any function $\tau(x, y, t)$ where $\kappa \in \mathbb{R}^n$ and $p \in Gr(k, n)$.

Main Idea

We study solutions to the KP equations arising from algebraic curves defined over a non-archimedean field \mathbb{K} , like $\mathbb{Q}(\epsilon)$ or $\mathbb{C}\{\{\epsilon\}\}$.

A curve over $\mathbb K$ can be thought of as a family of curves depending on a parameter ϵ

We study solutions to the KP equations arising from algebraic curves defined over a non-archimedean field \mathbb{K} , like $\mathbb{Q}(\epsilon)$ or $\mathbb{C}\{\{\epsilon\}\}$.

For $\epsilon \to 0$

- The theta function becomes a finite sum of exponentials
- The function

$$p(x, y, t) = 2\frac{\delta^2}{\delta x^2} \log \tau(x, y, t)$$

becomes a soliton solution of the KP equation

Degenerations of Theta Functions

Let X be a smooth curve of genus g over \mathbb{K} . The metric graph is $\operatorname{Trop}(X)$.

The metric graph $\Gamma = (V, E)$ of a genus 2 hyperelliptic curve

$$H_1(\Gamma,\mathbb{Z})=\langle \gamma_1,\ldots,\gamma_g\rangle$$

is a free abelian group of rank g

- e := |E|
- $\Lambda := g \times e$ matrix whose i-th row records the coordinate of γ_i with respect to the standard basis of \mathbb{Z}^e
- $\Delta :=$ diagonal $e \times e$ matrix that records edge lengths of the metric graph.

Definition

The Riemann matrix of $\Gamma = (V, E)$ is

 $Q = \Lambda \Delta \Lambda^T$

Example (g=2)

Consider $X := \{ y^2 = f(x) \}$ where

$$f(x) = (x-1)(x-1-\epsilon)(x-2)(x-2-\epsilon)(x-3)(x-3-\epsilon)$$

The six roots determine a subtree with six leaves which has a unique hyperelliptic covering by a metric graph of genus 2

Example (g=2)

Consider $X := \{ y^2 = f(x) \}$ where

$$f(x) = (x-1)(x-1-\epsilon)(x-2)(x-2-\epsilon)(x-3)(x-3-\epsilon)$$

The six roots determine a subtree with six leaves which has a unique hyperelliptic covering by a metric graph of genus 2

From the graph we can read off the tropical Riemann matrix Q

$$Q = \Lambda \Delta \Lambda^{T} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -2 & 4 \end{bmatrix}$$

Degenerations of Theta Functions

Consider

$$B_{\epsilon} = -\frac{1}{\epsilon}Q + R(\epsilon)$$

Fix $\mathbf{a} \in \mathbb{R}^{g}$

$$\theta(\mathbf{z} + \frac{1}{\epsilon} Q\mathbf{a} | B_{\epsilon}) = \sum_{\mathbf{c} \in \mathbb{Z}^g} \exp\left[-\frac{1}{2\epsilon} \mathbf{c}^T Q\mathbf{c} + \frac{1}{\epsilon} \mathbf{c}^T Q\mathbf{a}\right] \cdot \exp\left[\frac{1}{2} \mathbf{c}^T R(\epsilon) \mathbf{c} + \mathbf{c}^T \mathbf{z}\right]$$

Degenerations of Theta Functions

Consider

$$B_{\epsilon} = -\frac{1}{\epsilon}Q + R(\epsilon)$$

Fix $\mathbf{a} \in \mathbb{R}^{g}$

$$\theta(\mathbf{z} + \frac{1}{\epsilon} Q\mathbf{a} | B_{\epsilon}) = \sum_{\mathbf{c} \in \mathbb{Z}^{\beta}} \exp\left[-\frac{1}{2\epsilon} \mathbf{c}^{T} Q\mathbf{c} + \frac{1}{\epsilon} \mathbf{c}^{T} Q\mathbf{a}\right] \cdot \exp\left[\frac{1}{2} \mathbf{c}^{T} R(\epsilon) \mathbf{c} + \mathbf{c}^{T} \mathbf{z}\right]$$

Let $\epsilon \rightarrow 0$. This converges provided

$$\mathbf{c}^T Q \mathbf{c} - 2 \mathbf{c}^T Q \mathbf{a} \ge 0$$
 for all $\mathbf{c} \in \mathbb{Z}^g$

or equivalently

$$\mathbf{a}^T Q \mathbf{a} \le (\mathbf{a} - \mathbf{c})^T Q (\mathbf{a} - \mathbf{c}) \quad \text{for all } \mathbf{c} \in \mathbb{Z}^g$$

Voronoi and Delaunay

The condition

$$\mathbf{a}^T Q \mathbf{a} \le (\mathbf{a} - \mathbf{c})^T Q (\mathbf{a} - \mathbf{c})$$
 for all $\mathbf{c} \in \mathbb{Z}^g$

holds if and only if \mathbf{a} belongs to the Voronoi cell for Q

$$\theta(\mathbf{z} + \frac{1}{\epsilon} Q\mathbf{a} | B_{\epsilon}) = \sum_{\mathbf{c} \in \mathbb{Z}^{g}} \exp\left[-\frac{1}{2\epsilon} \mathbf{c}^{T} Q\mathbf{c} + \frac{1}{\epsilon} \mathbf{c}^{T} Q\mathbf{a}\right] \cdot \exp\left[\frac{1}{2} \mathbf{c}^{T} R(\epsilon) \mathbf{c} + \mathbf{c}^{T} \mathbf{z}\right]$$

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)

Fix **a** in the Voronoi cell of the tropical Riemann matrix Q. For $\epsilon \rightarrow 0$, the series

$$\theta(\mathbf{z} + \frac{1}{\epsilon} Q \mathbf{a} | B_{\epsilon})$$

converges to the theta function supported on the Delaunay set $\mathscr{C} = \mathscr{D}_{\mathbf{a},Q}$, namely

$$\theta_{\mathscr{C}}(\mathbf{x}) = \sum_{\mathbf{c}\in\mathscr{C}} a_{\mathbf{c}} \exp[\mathbf{c}^T \mathbf{z}], \text{ where } a_{\mathbf{c}} = \exp\left[\frac{1}{2}\mathbf{c}^T R(0)\mathbf{c}\right]$$

Example (g=2)

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)

Fix **a** in the Voronoi cell of Q and let $\mathscr{C} = \mathscr{D}_{\mathbf{a},Q}$ be the Delaunay set. As $\epsilon \to 0$, $1 \to 0$, Γ

$$\theta(\mathbf{z} + \frac{1}{\epsilon} Q \mathbf{a} | B_{\epsilon}) \rightarrow \theta_{\mathscr{C}}(\mathbf{x}) = \sum_{\mathbf{c} \in \mathscr{C}} a_{\mathbf{c}} \exp[\mathbf{c}^T \mathbf{z}],$$

where $a_{\mathbf{c}} = \exp\left[\frac{1}{2}\mathbf{c}^{T}R(0)\mathbf{c}\right]$

Example (g=2)

Theorem (Agostini-Fevola-M.-Sturmfels, 2021)

Fix **a** in the Voronoi cell of Q and let $\mathscr{C} = \mathcal{D}_{\mathbf{a},Q}$ be the Delaunay set. As $\epsilon \to 0$, 1

$$\theta(\mathbf{z} + \frac{1}{\epsilon} Q\mathbf{a} | B_{\epsilon}) \rightarrow \theta_{\mathscr{C}}(\mathbf{x}) = \sum_{\mathbf{c} \in \mathscr{C}} a_{\mathbf{c}} \exp[\mathbf{c}^T \mathbf{z}],$$

where $a_{\mathbf{c}} = \exp\left[\frac{1}{2}\mathbf{c}^{T}R(0)\mathbf{c}\right]$

Example

For
$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mathcal{C} = \mathcal{D}_{\mathbf{a},Q} = \{(0,0), (1,0), (0,1), (1,1)\}$$

The associated theta function is

 $\theta_{\mathcal{C}} = a_{00} + a_{10} \exp[z_1] + a_{01} \exp[z_2] + a_{11} \exp[z_1 + z_2]$

The Hirota Variety

Let
$$\mathscr{C} = {\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_m} \subset \mathbb{Z}^g$$

$$\theta_{\mathscr{C}}(\mathbf{z}) = a_1 \exp[\mathbf{c}_1^T \mathbf{z}] + a_2 \exp[\mathbf{c}_2^T \mathbf{z}] + \dots + a_m \exp[\mathbf{c}_m^T \mathbf{z}]$$

Consider

$$\tau(x, y, t) = \theta_{\mathscr{C}}(\mathbf{u}x + \mathbf{v}y + \mathbf{w}t) = \sum_{i=1}^{m} a_i \exp\left[\left(\sum_{j=1}^{g} c_{ij}u_j\right)x + \left(\sum_{j=1}^{g} c_{ij}v_j\right)y + \left(\sum_{j=1}^{g} c_{ij}w_j\right)t\right]$$

The Hirota Variety

Let
$$\mathscr{C} = {\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_m} \subset \mathbb{Z}^8$$

$$\theta_{\mathscr{C}}(\mathbf{z}) = a_1 \exp[\mathbf{c}_1^T \mathbf{z}] + a_2 \exp[\mathbf{c}_2^T \mathbf{z}] + \dots + a_m \exp[\mathbf{c}_m^T \mathbf{z}]$$

Consider

$$\tau(x, y, t) = \theta_{\mathscr{C}}(\mathbf{u}x + \mathbf{v}y + \mathbf{w}t) = \sum_{i=1}^{m} a_i \exp\left[\left(\sum_{j=1}^{g} c_{ij}u_j\right)x + \left(\sum_{j=1}^{g} c_{ij}v_j\right)y + \left(\sum_{j=1}^{g} c_{ij}w_j\right)t\right]$$

Definition

The Hirota variety $\mathscr{H}_{\mathscr{C}}$ consists of all points $(\mathbf{a}, (\mathbf{u}, \mathbf{v}, \mathbf{w}))$ in $(\mathbb{K}^*)^m \times \mathbb{WP}^{3g-1}$ such that $\tau(x, y, t)$ satisfies Hirota's differential equation

15/29

Remark

Hirota's differential equation can be written via the Hirota differential operators as

$$P(D_x, D_y, D_t)\tau \bullet \tau = 0$$

where $P(x, y, t) = x^4 - 4xt + 3y^2$ gives the soliton dispersion relation

16/29

Remark

Hirota's differential equation can be written via the Hirota differential operators as

$$P(D_x, D_y, D_t)\tau \bullet \tau = 0$$

where $P(x, y, t) = x^4 - 4xt + 3y^2$ gives the soliton dispersion relation

For any two indices k, ℓ in $\{1, \ldots, m\}$

$$P_{k\ell}(\mathbf{u}, \mathbf{v}, \mathbf{w}) := P((\mathbf{c}_k - \mathbf{c}_\ell) \cdot \mathbf{u}, (\mathbf{c}_k - \mathbf{c}_\ell) \cdot \mathbf{v}, (\mathbf{c}_k - \mathbf{c}_\ell) \cdot \mathbf{w})$$

is a hypersurface in \mathbb{WP}^{3g-1}

The polynomials defining $\mathscr{H}_{\mathscr{C}}$ correspond to points in

$$\mathscr{C}^{[2]} = \left\{ \mathbf{c}_k + \mathbf{c}_\ell : 1 \le k < \ell \le m \right\} \subset \mathbb{Z}^{\$}$$

Definition

A point **d** in $\mathscr{C}^{[2]}$ is uniquely attained if there exists precisely one index pair (k, ℓ) such that $\mathbf{c}_k + \mathbf{c}_\ell = \mathbf{d}$. In that case, (k, ℓ) is a unique pair.

Theorem (Agostini-Fevola-M.-Sturmfels)

The Hirota variety $\mathscr{H}_{\mathscr{C}}$ is defined by the quartics

 $P_{k\ell}(\mathbf{u}, \mathbf{v}, \mathbf{w}) := P((\mathbf{c}_k - \mathbf{c}_\ell) \cdot \mathbf{u}, (\mathbf{c}_k - \mathbf{c}_\ell) \cdot \mathbf{v}, (\mathbf{c}_k - \mathbf{c}_\ell) \cdot \mathbf{w})$

for all unique pairs (k, ℓ) and by the polynomials

 $\sum_{\substack{1 \le k < \ell \le m \\ \mathbf{c}_k + \mathbf{c}_\ell = \mathbf{d}}} P_{k\ell}(\mathbf{u}, \mathbf{v}, \mathbf{w}) a_k a_\ell$

for all non-uniquely attained points $\mathbf{d} \in \mathcal{C}^{[2]}$. If all points in $\mathcal{C}^{[2]}$ are uniquely attained then $\mathcal{H}_{\mathcal{C}}$ is defined by the $\binom{m}{2}$ quartics $P_{k\ell}(\mathbf{u}, \mathbf{v}, \mathbf{w})$. Example (The Square) Let g = 2 and $\mathscr{C} = \{0, 1\}^2$

 $\mathcal{C}^{[2]} = \{(0,1), (1,0), (1,1), (1,2), (2,1)\}$

There are four unique pairs (k, ℓ)

$$P_{13} = P_{24} = u_1^4 - 4u_1w_1 + 3v_1^2$$
$$P_{12} = P_{34} = u_2^4 - 4u_2w_2 + 3v_2^2$$

The point $\mathbf{d} = (1, 1)$ is not uniquely attained in $\mathscr{C}^{[2]}$

 $P(u_1 + u_2, v_1 + v_2, w_1 + w_2) a_{00}a_{11} + P(u_1 - u_2, v_1 - v_2, w_1 - w_2) a_{01}a_{10}$

For any point in $\mathscr{H}_{\mathscr{C}} \subset (\mathbb{K}^*)^4 \times \mathbb{WP}^5$, we can write $\tau(x, y, t)$ as a (2,4)-soliton

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Example (The Cube)

Let g = 3 and consider the tropical degeneration of a smooth plane quartic C to a rational quartic

 $\theta_{\mathscr{C}} = a_{000} + a_{100} \exp[z_1] + a_{010} \exp[z_2] + a_{001} \exp[z_3] + a_{110} \exp[z_1 + z_2]$ $+ a_{101} \exp[z_1 + z_3] + a_{011} \exp[z_2 + z_3] + a_{111} \exp[z_1 + z_2 + z_3].$

Example (The Cube)

Let g = 3 and consider the tropical degeneration of a smooth plane quartic C to a rational quartic

 $\begin{aligned} \theta_{\mathscr{C}} &= a_{000} + a_{100} \exp[z_1] + a_{010} \exp[z_2] + a_{001} \exp[z_3] + a_{110} \exp[z_1 + z_2] \\ &+ a_{101} \exp[z_1 + z_3] + a_{011} \exp[z_2 + z_3] + a_{111} \exp[z_1 + z_2 + z_3]. \end{aligned}$

We compute the Hirota variety in $(\mathbb{K}^*)^8 \times \mathbb{WP}^8$. The set $\mathscr{C}^{[2]}$ consists of 19 points.

- 12 pts uniquely attained, one for each edge of the cube \rightarrow quartics $u_j^4 4u_jw_j + 3v_j^2$, one for each edge direction $\mathbf{c}_k \mathbf{c}_\ell$
- 6 pts attained twice \rightarrow contribute 6 equations, one for each facet
- (1,1,1) four times $\rightarrow P(u_1 + u_2 + u_3, v_1 + v_2 + v_3, w_1 + w_2 + w_3) a_{000} a_{111}$ + $P(u_1 + u_2 - u_3, v_1 + v_2 - v_3, w_1 + w_2 - w_3) a_{001} a_{110}$ + $P(u_1 - u_2 + u_3, v_1 - v_2 + v_3, w_1 - w_2 + w_3) a_{010} a_{101}$ + $P(-u_1 + u_2 + u_3, -v_1 + v_2 + v_3, -w_1 + w_2 + w_3) a_{100} a_{011}$

The Sato Grassmannian: Some Intuition

Classical Grassmannian Gr(k, n)

- parametrizes k-dimensional subspaces of \mathbb{K}^n
- projective variety in $\mathbb{P}^{\binom{n}{k}-1}$, cut out by quadratic relations known as *Plücker relations*
- Plücker coordinates $p_I = c_\lambda$ are indexed by k-element subsets of [n], identified with partitions λ that fit into a $k \times (n-k)$ rectangle. These are the maximal minors of a $k \times n$ matrix M of unknowns

The Sato Grassmannian (SGM)

- the zero set of the Plücker relations in the unknowns c_{λ} , where we now drop the constraint that λ fits into a $k \times (n-k)$ -rectangle.
- we now allow arbitrary partitions λ

The SGM is a device for encoding all solutions to the KP equation!

The Sato Grassmannian

Let $V = \mathbb{K}((z))$ and consider the natural projection map

 $\pi\colon V \to \mathbb{K}[z^{-1}]$

Definition

Points in the Sato Grassmannian SGM correspond to $\mathbb{K}\text{-subspaces }U \subset V$ such that

 $\dim \operatorname{Ker} \pi_{|U} = \dim \operatorname{Coker} \pi_{|U} < \infty$

The Sato Grassmannian

Let $V = \mathbb{K}((z))$ and consider the natural projection map

 $\pi\colon V \to \mathbb{K}[z^{-1}]$

Definition

Points in the Sato Grassmannian SGM correspond to $\mathbb{K}\text{-subspaces }U \subset V$ such that

 $\dim \operatorname{Ker} \pi_{|U} = \dim \operatorname{Coker} \pi_{|U} < \infty$

How do we represent a point in SGM?

For any basis $(f_1, f_2, f_3, ...)$ of $U \in SGM$

$$f_j(z) = \sum_{i=-\infty}^{+\infty} \xi_{i,j} z^{i+1}.$$

Then *U* is the column span of the infinite matrix $\xi = (\xi_{i,j})$.

The Sato Grassmannian

A subspace U of V gives a point in SGM if and only if there is a basis whose corresponding matrix has the shape

Connections of the SGM to solutions to the KP equation

Definition

A Maya diagram is an infinite sequence $M = (m_1, m_2, m_3, ...)$ of integers $m_1 > m_2 > m_3 > ...$ such that $m_i = -i$ for all *i* large enough.

- Maya diagrams correspond to partitions $\lambda = (\lambda_1, \lambda_2, ..., \lambda_r)$
- It makes sense to define

$$\xi_\lambda := \xi_M = \det(\xi_{m_i,j})$$

The τ -function associated to ξ is

$$\tau(t_1, t_2, t_3, \ldots) = \sum_{\lambda} \xi_{\lambda} \sigma_{\lambda}(t_1, t_2, t_3, \ldots)$$

Connections of the SGM to solutions to the KP equation

Definition

A Maya diagram is an infinite sequence $M = (m_1, m_2, m_3, ...)$ of integers $m_1 > m_2 > m_3 > ...$ such that $m_i = -i$ for all *i* large enough.

- Maya diagrams correspond to partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$
- It makes sense to define

$$\xi_{\lambda} := \xi_M = \det(\xi_{m_i,j})$$

The τ -function associated to ξ is

$$\tau(t_1, t_2, t_3, \ldots) = \sum_{\lambda} \xi_{\lambda} \sigma_{\lambda}(t_1, t_2, t_3, \ldots)$$

Theorem (Sato)

The function $\tau(t;\xi)$ is a solution to the KP hierarchy. Conversely, any solution of the KP hierarchy is of this form.

Soliton Solutions & Sato's Solutions

Recall

$$\tau(x, y, t) = \sum_{I \in \binom{[n]}{k}} p_I \cdot \prod_{\substack{i, j \in I \\ i < j}} (\kappa_j - \kappa_i) \cdot \exp\left[x \cdot \sum_{i \in I} \kappa_i + y \cdot \sum_{i \in I} \kappa_i^2 + t \cdot \sum_{i \in I} \kappa_i^3\right]$$

and

$$\tau(t_1, t_2, t_3, \ldots) = \sum_{\lambda} \xi_{\lambda} \sigma_{\lambda}(t_1, t_2, t_3, \ldots)$$

Soliton Solutions & Sato's Solutions

Recall

$$\tau(x, y, t) = \sum_{I \in \binom{[n]}{k}} p_I \cdot \prod_{i, j \in I \atop i < j} (\kappa_j - \kappa_i) \cdot \exp\left[x \cdot \sum_{i \in I} \kappa_i + y \cdot \sum_{i \in I} \kappa_i^2 + t \cdot \sum_{i \in I} \kappa_i^3\right]$$

and

$$\tau(t_1, t_2, t_3, \ldots) = \sum_{\lambda} \xi_{\lambda} \sigma_{\lambda}(t_1, t_2, t_3, \ldots)$$

Proposition (Agostini-Fevola-M.-Sturmfels)

The (k, n)-soliton has the following expansion into Schur polynomials

$$\tau(x, y, t) = \sum_{\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge 0} c_{\lambda} \cdot \sigma_{\lambda}(x, y, t), \quad \text{where} \quad c_{\lambda} = \sum_{I \in \binom{[n]}{k}} p_I \cdot \Delta_{\lambda}(\kappa_i, i \in I)$$

Tau Functions from Algebraic Curves

Let X be a smooth projective curve of genus g defined over a field \mathbb{K} . Fix a divisor D of degree g-1 on X and a point $p \in X$

For m < n

$$H^0(X, D+mp) \subseteq H^0(X, D+np) \subseteq \dots \subseteq H^0(X, D+\infty p)$$

Let z denote a local coordinate on X at p and $m = \operatorname{ord}_p(D)$

$$\iota: H^0(X, D + \infty p) \to V, \qquad s = \sum_{n \in \mathbb{Z}} s_n z^n \mapsto \sum_{n \in \mathbb{Z}} s_n z^{n+m+1}$$

Proposition (Segal-Wilson)

The space $U = \iota(H^0(X, D + \infty p)) \subset V$ lies in SGM.

The case of genus 2 hyperelliptic curves

Let

$$X = \left\{ y^2 = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_6) \right\}$$

Let p be one of the two preimages of p_{∞} under the double cover $X \to \mathbb{P}^1$. Let $z = \frac{1}{x}$ around p

$$y = \pm \sqrt{(x - \lambda_1) \cdots (x - \lambda_6)} = \pm \frac{1}{z^3} \cdot \sum_{n=0}^{+\infty} \alpha_n z^n$$

The case of genus 2 hyperelliptic curves

Let

$$X = \left\{ y^2 = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_6) \right\}$$

Let p be one of the two preimages of p_{∞} under the double cover $X \to \mathbb{P}^1$. Let $z = \frac{1}{x}$ around p

$$y = \pm \sqrt{(x - \lambda_1) \cdots (x - \lambda_6)} = \pm \frac{1}{z^3} \cdot \sum_{n=0}^{+\infty} \alpha_n z^n$$

We consider three kinds of divisors:

$$D_0 = p$$
, $D_1 = p_1$, $D_2 = p_1 + p_2 - p$

For $m \ge 3$, consider the functions $g_m(x) = \sum_{j=0}^m \alpha_j x^{m-j}$ $f_m(x, y) = \frac{1}{2} \left(x^{m-3} y + g_m(x) \right)$ $h_j(x, y) = \frac{f_3(x, y) - f_3(c_j, -y_j)}{x - c_j} = \frac{y + g_3(x) - (-y_j + g_3(c_j))}{2(x - c_j)}$ for j = 1, 2

Yelena Mandelshtam (UC Berkeley)

KP Solitons from Tropical Limits

July 12, 2021 27 / 29

We write $U_i = \iota(H^0(X, D_i + \infty p))$

Proposition (Nakayashiki)

The set $\{1, f_3, f_4, f_5, ...\}$ is a basis of U_0 , the set $\{1, f_3, f_4, f_5, ...\} \cup \{h_1\}$ is a basis of U_1 , and $\{1, f_3, f_4, f_5, ...\} \cup \{h_1, h_2\}$ is a basis of U_2 .

Computations

We implemented the method in Maple for $D_0 = p$ on hyperelliptic curves over $\mathbb{K} = \mathbb{Q}(\epsilon)$

$$\tau[n] := \sum_{i=1}^n \sum_{\lambda \vdash i} \xi_\lambda \sigma_\lambda(x, y, t),$$

You can find it here:

https://mathrepo.mis.mpg.de

Yelena Mandelshtam (UC Berkeley)

KP Solitons from Tropical Limits

Thank you!