Non-Rigid Rank-One Infinite Measures on the Circle
Joint Mathematics Meetings

James Leng1, Yelena Mandelshtam2
Joint work with: Hindy Drillick, Alonso Espinosa Domínguez, Jennifer Jones
Advisor: Cesar Silva

1University of California, Berkeley
2Stanford University

July 31, 2020
Notation

- X will be a measurable subset of real line.
- m will be Lebesgue measure on the line, (X, m) will denote measure space of Lebesgue measure on line.
Notation

- X will be a measurable subset of real line.
- m will be Lebesgue measure on the line, (X, m) will denote measure space of Lebesgue measure on line.
- $T: X \to X$ a measurable, invertible, measure-preserving transformation; i.e., $m(TA) = m(A)$.

S_1 is unit circle. We also use m for Lebesgue measure on circle, since you can think of S_1 as $[0,1)$ mod 1.

A measurable dynamical system is a triple (X, m, T).

"(mod m)" means "up to a null set."
Notation

- X will be a measurable subset of real line.
- m will be Lebesgue measure on the line, (X, m) will denote measure space of Lebesgue measure on line
- $T : X \to X$ a measurable, invertible, measure-preserving transformation; i.e., $m(TA) = m(A)$.
- \mathbb{S}^1 is unit circle. We also use m for Lebesgue measure on circle, since you can think of \mathbb{S}^1 as $[0, 1) \mod 1$.

Notation

- X will be a measurable subset of real line.
- m will be Lebesgue measure on the line, (X, m) will denote measure space of Lebesgue measure on line
- $T : X \to X$ a measurable, invertible, measure-preserving transformation; i.e., $m(TA) = m(A)$.
- \mathbb{S}^1 is unit circle. We also use m for Lebesgue measure on circle, since you can think of \mathbb{S}^1 as $[0, 1) \mod 1$.
- A measurable dynamical system is a triple (X, m, T).
- "(mod m)" means "up to a null set."
Introduction

What can happen in a measurable dynamical system?

- Super boring example: T is just the identity. So nothing happens: all sets are invariant, $TA = A$ a.e..

More interesting: "No" proper subsets are invariant under T. This is what is called Ergodic. For all $n \neq 0$, T^n is ergodic. This is called totally ergodic.

When we write $B = A \mod m$, we mean $m(B \setminus A) + m(A \setminus B) = 0$.

Definition

A transformation T is ergodic if for every measurable A, $TA = A \mod m$ if and only if $m(A) = 0$ or $m(A^c) = 0$.
Introduction

What can happen in a measurable dynamical system?

- Super boring example: T is just the identity. So nothing happens: all sets are invariant, $TA = A$ a.e..
- More interesting: “No” proper subsets are invariant under T. This is what is called **Ergodic**.
Introduction

What can happen in a measurable dynamical system?

- Super boring example: T is just the identity. So nothing happens: all sets are invariant, $TA = A$ a.e..
- More interesting: “No” proper subsets are invariant under T. This is what is called **Ergodic**.
- For all $n \neq 0$, T^n is ergodic. This is called **totally ergodic**.
Introduction

What can happen in a measurable dynamical system?

- Super boring example: T is just the identity. So nothing happens: all sets are invariant, $TA = A$ a.e..
- More interesting: “No” proper subsets are invariant under T. This is what is called Ergodic.
- For all $n \neq 0$, T^n is ergodic. This is called totally ergodic.

When we write $B = A \mod m$, we mean

$$m(B \setminus A) + m(A \setminus B) = 0$$

Definition

A transformation T is ergodic if for every measurable A, $TA = A \mod m$ if and only if $m(A) = 0$ or $m(A^c) = 0$.
Eigenvalues of T

Definition

Let T be a measure preserving transformation. A number $\lambda \in \mathbb{C}$ is an L^∞ eigenvalue of T if there exists a nonzero a.e. function $f \in L^\infty$ such that

$$f \circ T = \lambda f \text{ a.e.}.$$

f is called an eigenfunction of T.
Eigenvalues of T

Definition

Let T be an measure preserving transformation. A number $\lambda \in \mathbb{C}$ is an L^∞ **eigenvalue** of T if there exists a nonzero a.e. function $f \in L^\infty$ such that

$$f \circ T = \lambda f \text{ a.e.}.$$

f is called an **eigenfunction** of T.

- For eigenvalues λ, $|\lambda| = 1$; i.e., $\lambda \in \mathbb{S}^1$:

$$\|f\|_\infty = \|f \circ T\|_\infty = |\lambda| \|f\|_\infty \implies |\lambda| = 1.$$
Eigenvalues of T

Definition

Let T be an measure preserving transformation. A number $\lambda \in \mathbb{C}$ is an L^∞ eigenvalue of T if there exists a nonzero a.e. function $f \in L^\infty$ such that

$$f \circ T = \lambda f \text{ a.e.}$$

f is called an *eigenfunction* of T.

- For eigenvalues λ, $|\lambda| = 1$; i.e., $\lambda \in \mathbb{S}^1$:

$$\|f\|_\infty = \|f \circ T\|_\infty = |\lambda| \|f\|_\infty \implies |\lambda| = 1.$$

- An eigenvalue λ is a *rational eigenvalue* if there exists an $n \neq 0$ such that $\lambda^n = 1$. Otherwise, λ is an *irrational eigenvalue*.

Eigenvalues of T

Definition

Let T be an measure preserving transformation. A number $\lambda \in \mathbb{C}$ is an L^∞ **eigenvalue** of T if there exists a nonzero a.e. function $f \in L^\infty$ such that

$$f \circ T = \lambda f \text{ a.e.}$$

f is called an **eigenfunction** of T.

- For eigenvalues λ, $|\lambda| = 1$; i.e., $\lambda \in \mathbb{S}^1$:

 $$\|f\|_\infty = \|f \circ T\|_\infty = |\lambda| \|f\|_\infty \implies |\lambda| = 1.$$

- An eigenvalue λ is a **rational eigenvalue** if there exists an $n \neq 0$ such that $\lambda^n = 1$. Otherwise, λ is an **irrational eigenvalue**.
Eigenvalues of T (continued)

T has no rational eigenvalues $\iff T$ is totally ergodic.
Eigenvalues of T (continued)

T has no rational eigenvalues $\iff T$ is totally ergodic.

Definition

An ergodic transformation T is called **weakly mixing** if its only eigenvalue is 1.
Rotations

Definition

Given any number α, we define the rotation of \mathbb{S}^1 by α to be

$$R_\alpha(z) = e^{2\pi i \alpha} z$$
Rotations

Definition

Given any number \(\alpha \), we define the rotation of \(\mathbb{S}^1 \) by \(\alpha \) to be

\[
R_\alpha(z) = e^{2\pi i \alpha} z
\]

- \(R_\alpha \) preserves Lebesgue measure \(m \). This is the unique finite measure that is invariant for irrational rotations (Unique Ergodicity).
Rotations

Definition

Given any number α, we define the rotation of \mathbb{S}^1 by α to be

$$R_\alpha(z) = e^{2\pi i \alpha} z$$

- R_α preserves Lebesgue measure m. This is the unique finite measure that is invariant for irrational rotations (**Unique Ergodicity**).
- $(\mathbb{S}^1, m, R_\alpha)$ is an example of a dynamical system.
Rotations

Definition
Given any number α, we define the rotation of \mathbb{S}^1 by α to be

$$R_\alpha(z) = e^{2\pi i \alpha} z$$

- R_α preserves Lebesgue measure m. This is the unique finite measure that is invariant for irrational rotations (Unique Ergodicity).
- $(\mathbb{S}^1, m, R_\alpha)$ is an example of a dynamical system.
- Rational rotations are boring: not ergodic, $R_{\frac{p}{q}}$ is the identity.
Irrational Rotations

- Ergodic.

Totally ergodic: $R_n \alpha = R_n \alpha$. Not weakly mixing: $z_n \circ R \alpha = e^{2\pi i \alpha z_n}$. These are the only eigenvalues.

Most importantly for us... Irrational rotations are rank-one. (Del Junco, 1976)

A goal of our project was to find an infinite-measure rank-one dynamical system with as many of these properties as possible.
Irrational Rotations

- Ergodic.
- Totally ergodic: $R^n_\alpha = R_{n\alpha}$.

Most importantly for us, irrational rotations are rank-one. (Del Junco, 1976)

A goal of our project was to find an infinite-measure rank-one dynamical system with as many of these properties as possible.
Irrational Rotations

- Ergodic.
- Totally ergodic: \(R_\alpha^n = R_{n\alpha} \).
- Not weakly mixing: \(z^n \circ R_\alpha = e^{2\pi in\alpha} z^n \).

Most importantly for us... Irrational rotations are rank-one. (Del Junco, 1976)

A goal of our project was to find an infinite-measure rank-one dynamical system with as many of these properties as possible.
Irrational Rotations

- Ergodic.
- Totally ergodic: $R^n_\alpha = R_{n\alpha}$.
- Not weakly mixing: $z^n \circ R_\alpha = e^{2\pi i n\alpha} z^n$.
- These are the only eigenvalues.

Most importantly for us...
Irrational Rotations

- Ergodic.
- Totally ergodic: $R^n_\alpha = R_{n\alpha}$.
- Not weakly mixing: $z^n \circ R_\alpha = e^{2\pi in\alpha} z^n$.
- These are the only eigenvalues.

Most importantly for us... Irrational rotations are **Rank-one**. (Del Junco, 1976)
Irrational Rotations

- Ergodic.
- Totally ergodic: $R^n_\alpha = R_{n\alpha}$.
- Not weakly mixing: $z^n \circ R_\alpha = e^{2\pi in\alpha} z^n$.
- These are the only eigenvalues.

Most importantly for us... Irrational rotations are **Rank-one**. (Del Junco, 1976)

A goal of our project was to find an infinite-measure rank-one dynamical system with as many of these properties as possible.
Rank-one transformations are transformations that can be constructed through a method called cutting and stacking a sequence of columns.
Cutting and Stacking

- The space we are working in is \(\mathbb{R} \)
Cutting and Stacking

- The space we are working in is \mathbb{R}

1. A **column** C of **height** h is composed of h pairwise disjoint intervals stacked on top of one another. These intervals are the **levels** of the column, and they all have the same length.

```
    ____________
    |          |
    |          |
    |          |
    v          v
    h          h
    |          |
    |          |
    |          |
    ____________
```
The space we are working in is \mathbb{R}.

1. A **column** C of **height** h is composed of h pairwise disjoint intervals stacked on top of one another. These intervals are the **levels** of the column, and they all have the same length.

Suppose we have column C_k with height h_k. Define T_k to be the transformation that takes each interval to the one on top of it by translation. Notice that T_k is not defined on the top level.
Cutting and Stacking

- The space we are working in is \mathbb{R}

1. A **column** C of **height** h is composed of h pairwise disjoint intervals stacked on top of one another. These intervals are the **levels** of the column, and they all have the same length.

Suppose we have column C_k with height h_k. Define T_k to be the transformation that takes each interval to the one on top of it by translation. Notice that T_k is not defined on the top level.

We show how to create C_{k+1} by cutting and stacking.
2. Cut the column vertically into b_k equally sized subcolumns. In this example $b_k = 3$.
3. Add desired number of **spacers** on top of each subcolumn. Spacers are just intervals in \mathbb{R} that are not yet included in our column. In this example we put three spacers on the second subcolumn and two spacers on the third subcolumn.
Cutting and Stacking

4. Stack the subcolumns and spacers to form column C_{k+1}

$h_k \left\{ \begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{array} \right\}

b_k

h_{k+1} = b_k h_k + \# spacers
5. Repeat. This generates an infinite sequence of columns \((C_k)\).
5. Repeat. This generates an infinite sequence of columns \((C_k)\).

Let \(X \subset \mathbb{R}\) be the union of the columns. We define our rank-one transformation \(T: X \to X\) by taking the limit of the partially defined transformations \(T_k\). This limit exists since in each successive column, \(T_k\) is defined on more of \(X\), as the measure of the top level decreases. Also, \(T_k = T_j\) on \(C_j\) for all \(k > j\).
5. Repeat. This generates an infinite sequence of columns \((C_k)\).

Let \(X \subset \mathbb{R}\) be the union of the columns. We define our rank-one transformation \(T: X \rightarrow X\) by taking the limit of the partially defined transformations \(T_k\). This limit exists since in each successive column, \(T_k\) is defined on more of \(X\), as the measure of the top level decreases. Also, \(T_k = T_j\) on \(C_j\) for all \(k > j\).

A rank-one transformation is one constructed as above with a sequence of single columns. A rank-\(n\) transformation requires sequences of \(n\) columns.
5. Repeat. This generates an infinite sequence of columns \((C_k)\).

Let \(X \subset \mathbb{R}\) be the union of the columns. We define our rank-one transformation \(T: X \rightarrow X\) by taking the limit of the partially defined transformations \(T_k\). This limit exists since in each successive column, \(T_k\) is defined on more of \(X\), as the measure of the top level decreases. Also, \(T_k = T_j\) on \(C_j\) for all \(k > j\).

A rank-one transformation is one constructed as above with a sequence of single columns. A rank-\(n\) transformation requires sequences of \(n\) columns.

Therefore, a rank-one transformation can be defined just by specifying the number of cuts and spacers for each column.
Properties of Rank-One

- Every finite measurable set in X can be approximated by levels.
Properties of Rank-One

- Every finite measurable set in X can be approximated by levels.
- Ergodic
Properties of Rank-One

- Every finite measurable set in X can be approximated by levels.
- Ergodic
- Generic in the space of measure preserving transformations
Properties of Rank-One

- Every finite measurable set in X can be approximated by levels.
- Ergodic
- Generic in the space of measure preserving transformations
- An important class of examples and counterexamples in ergodic theory
Diophantine Approximations

Every irrational number α can be uniquely described as a continued fraction

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ldots}}$$
Diophantine Approximations

Every irrational number α can be uniquely described as a continued fraction

$$a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \ddots}}$$

We can write $\alpha = [a_0; a_1, a_2...]$, where the a_k are called the coefficients of the continued fraction. The rational numbers

$$\frac{p_k}{q_k} := a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cdots + a_{k-1}}}$$

are called the convergents for α. The sequence of convergents provides a best Diophantine approximation of α by rational numbers.
Diophantine Approximations

We can express the convergents in terms of the coefficients by the following recursive formulas:

\[p_k = a_{k-1} p_{k-1} + p_{k-2} \]

\[q_k = a_{k-1} q_{k-1} + q_{k-2} \]

where \(p_1 = a_0 \) and \(q_1 = 1 \).
The Construction

(Generalizes Del Junco’s 1976 construction)
Given an irrational number α we construct a rank-one transformation T_α that is:

- totally ergodic
The Construction

(Generalizes Del Junco’s 1976 construction)
Given an irrational number α we construct a rank-one transformation T_α that is:

- totally ergodic
- not weakly mixing

Based on the coefficients of α, this transformation will act either on a finite or infinite measure space X. Let (p_k/q_k) be the sequence of convergents of α, and (a_k) its coefficients. Let column C_1 be the unit interval. Notice that the height of $C_1 = 1 = q_1$.

James Leng, Yelena Mandelshtam Joint work with: Hindy Drillick, Alonso Espinosa Domínguez, Jennifer Jones Advisor: Cesar Silva (VFU)
The Construction

(Generalizes Del Junco’s 1976 construction)

Given an irrational number α we construct a rank-one transformation T_α that is:

- totally ergodic
- not weakly mixing
- has $e^{2\pi i \alpha}$ as an eigenvalue
The Construction

(Generalizes Del Junco’s 1976 construction)
Given an irrational number α we construct a rank-one transformation T_α that is:

- totally ergodic
- not weakly mixing
- has $e^{2\pi i\alpha}$ as an eigenvalue

Based on the coefficients of α, this transformation will act either on a finite or infinite measure space X.

James Leng, Yelena Mandelshtam Joint wNon-Rigid Rank-One Infinite Measures or

July 31, 2020 17 / 31
The Construction

(Generalizes Del Junco’s 1976 construction)
Given an irrational number α we construct a rank-one transformation T_α that is:

- totally ergodic
- not weakly mixing
- has $e^{2\pi i \alpha}$ as an eigenvalue

Based on the coefficients of α, this transformation will act either on a finite or infinite measure space X.

Let $\left(\frac{p_k}{q_k}\right)$ be the sequence of convergents of α, and $\left(a_k\right)$ its coefficients. Let column C_1 be the unit interval. Notice that the height of $C_1 = 1 = q_1$.
The Construction

Suppose that column C_k of height q_k has already been constructed. We cut C_k into a_k cuts. We then add q_{k-1} spacers to the rightmost cut. This gives us column C_{k+1} with height $a_k q_k + q_{k-1} = q_{k+1}$ as desired.
The Construction

Definition

An irrational number α is of **golden type** if there exists an integer N such that $a_k = 1$ for all $k > N$.
The Construction

Definition
An irrational number α is of **golden type** if there exists an integer N such that $a_k = 1$ for all $k > N$.

- The golden ratio $\phi = [1; 1, 1, 1,...]$ is of golden type.
The Construction

Definition

An irrational number α is of **golden type** if there exists an integer N such that $a_k = 1$ for all $k > N$.

- The golden ratio $\phi = [1;1,1,1,...]$ is of golden type.
- Numbers of golden type are a countable subset of the irrationals.
The Construction

Definition

An irrational number α is of **golden type** if there exists an integer N such that $a_k = 1$ for all $k > N$.

- The golden ratio $\phi = [1;1,1,1,...]$ is of golden type.
- Numbers of golden type are a countable subset of the irrationals.
- T_α is well defined for all α that are not of golden type.
Measure of X

Since we add spacers, the total measure of our space X can be infinite.
Measure of X

Since we add spacers, the total measure of our space X can be infinite.

- X has infinite measure if and only if $\sum_{k=1}^{\infty} \frac{1}{a_k a_{k+1}} = \infty$.

James Leng, Yelena Mandelshtam Joint work with: Hindy Drillick, Alonso Espinosa Domínguez, Jennifer Jones Advisor: Cesar Silva (VFU)
Measure of X

Since we add spacers, the total measure of our space X can be infinite.

- X has infinite measure if and only if $\sum_{k=1}^{\infty} \frac{1}{a_k a_{k+1}} = \infty$.
- This is true for all irrational numbers α except for an uncountable set of measure zero.

Definition

An irrational number α is badly approximable if its coefficients are bounded by some integer M. For badly approximable numbers $\sum_{k=1}^{\infty} \frac{1}{M^k} \geq \sum_{k=1}^{\infty} \frac{1}{M^2} = \infty$, so T_α acts on an infinite measure space X.

e.g. $p^2 = [1;2,2,2...]$ is an example where T_α acts on a finite measure space X.
Measure of X

Since we add spacers, the total measure of our space X can be infinite.

- X has infinite measure if and only if $\sum_{k=1}^{\infty} \frac{1}{a_k a_{k+1}} = \infty$.
- This is true for all irrational numbers α except for an uncountable set of measure zero.

Definition

An irrational number α is **badly approximable** if its coefficients are bounded by some integer M.

James Leng, Yelena Mandelshtam Joint vNon-Rigid Rank-One Infinite Measures or July 31, 2020 20 / 31
Measure of X

Since we add spacers, the total measure of our space X can be infinite.

- X has infinite measure if and only if $\sum_{k=1}^{\infty} \frac{1}{a_ka_{k+1}} = \infty$.
- This is true for all irrational numbers α except for an uncountable set of measure zero.

Definition

An irrational number α is **badly approximable** if its coefficients are bounded by some integer M.

- For badly approximable numbers $\sum_{k=1}^{\infty} \frac{1}{a_ka_{k+1}} \geq \sum_{k=1}^{\infty} \frac{1}{M^2} = \infty$, so T_α acts on an infinite measure space X.
 - e.g. $\sqrt{2} = [1; 2, 2, 2...]$
Measure of X

Since we add spacers, the total measure of our space X can be infinite.

- X has infinite measure if and only if $\sum_{k=1}^{\infty} \frac{1}{a_k a_{k+1}} = \infty$.
- This is true for all irrational numbers α except for an uncountable set of measure zero.

Definition

An irrational number α is **badly approximable** if its coefficients are bounded by some integer M.

- For badly approximable numbers $\sum_{k=1}^{\infty} \frac{1}{a_k a_{k+1}} \geq \sum_{k=1}^{\infty} \frac{1}{M^2} = \infty$, so T_α acts on an infinite measure space X.
 - e.g. $\sqrt{2} = [1;2,2,2...]$
- An example where T_α acts on a finite measure space X is $\alpha = [0;1,2,3,4,...] = \frac{I_1(2)}{I_0(2)}$, where I_1, I_0 are the modified Bessel functions of the first kind. This is finite, since $\sum_{k=1}^{\infty} \frac{1}{n(n+1)} = 1 < \infty$.
Eigenfunction of T_α

We now construct an L^∞ eigenfunction f for T_α with $\lambda = e^{2\pi i \alpha}$ as an eigenvalue.
Eigenfunction of T_α

We now construct an L^∞ eigenfunction f for T_α with $\lambda = e^{2\pi i \alpha}$ as an eigenvalue.

Lemma

Define $\epsilon_k := \left| \alpha - \frac{p_k}{q_k} \right|$. Then for all irrational numbers α,

$$\sum_{k=1}^{\infty} \epsilon_k q_{k+1} < \infty.$$
Eigenfunction of T_α

Let $\lambda = e^{2\pi i \alpha}$

Definition ($g_k : X \rightarrow S^1$)

$$g_k(x) = \begin{cases}
\lambda^n &: \text{for } x \text{ on the } n\text{th level of } C_k \\
0 &: x \in X \setminus C_k
\end{cases}$$

If x not in last level of C_k, $g_k(T_\alpha x) = \lambda g(x)$, so it’s almost an eigenfunction. We want to say this sequence converges to an actual eigenfunction.
Eigenfunction of T_α

Let $\lambda = e^{2\pi i \alpha}$

Definition ($g_k : X \to \mathbb{S}^1$)

$$g_k(x) = \begin{cases}
\lambda^n : & \text{for } x \text{ on the } n\text{th level of } C_k \\
0 : & x \in X \setminus C_k
\end{cases}$$

If x not in last level of C_k, $g_k(T_\alpha x) = \lambda g(x)$, so it’s almost an eigenfunction. We want to say this sequence converges to an actual eigenfunction.

Definition ($f_k : X \to \mathbb{S}^1$)

$$f_k(x) = \begin{cases}
g_k : & x \in C_k \\
g_j : & x \in C_j \setminus C_{j-1} \text{ for all } j \geq k+1
\end{cases}$$
Eigenfunction of T_α

Let $\lambda = e^{2\pi i \alpha}$

Definition ($g_k : X \to \mathbb{S}^1$)

$$g_k(x) = \begin{cases}
\lambda^n & \text{for } x \text{ on the } n\text{th level of } C_k \\
0 & x \in X \setminus C_k \end{cases}$$

If x not in last level of C_k, $g_k(T_\alpha x) = \lambda g(x)$, so it’s almost an eigenfunction. We want to say this sequence converges to an actual eigenfunction.

Definition ($f_k : X \to \mathbb{S}^1$)

$$f_k(x) = \begin{cases}
g_k : x \in C_k \\
g_j \ x \in C_j \setminus C_{j-1} & \text{for all } j \geq k + 1
\end{cases}$$

Then the f_k are defined on all of X and are clearly L^∞.
Eigenfunction of T_α

We can show

$$\|f_{k+1} - f_k\|_\infty < 2\pi \epsilon_k q_{k+1}.$$
Eigenfunction of T_α

We can show
\[\|f_{k+1} - f_k\|_\infty < 2\pi \epsilon_k q_{k+1}. \]

And by the previous lemma, this implies
\[\sum_{k=0}^{\infty} \|f_{k+1} - f_k\|_\infty < \infty \]

making (f_k) a Cauchy sequence.
Eigenfunction of T_α

We can show
\[
\|f_{k+1} - f_k\|_\infty < 2\pi \epsilon k q_{k+1}.
\]

And by the previous lemma, this implies
\[
\sum_{k=0}^{\infty} \|f_{k+1} - f_k\|_\infty < \infty
\]

making (f_k) a Cauchy sequence.

Finally, we let $f = \lim_{k \to \infty} f_k$.

\[
f(T_\alpha(x)) = \lim_{k \to \infty} f_k(T_\alpha(x)) = \lambda \lim_{k \to \infty} f_k(x) = \lambda f(x).
\]
Let f be the eigenfunction of T_α as defined above.

Theorem

f is injective.
Eigenfunction of T_α

Let f be the eigenfunction of T_α as defined above.

Theorem

f is injective.

Theorem

$f^{-1}(\mathcal{B}(S^1)) = \mathcal{B}(X)$.
Eigenfunction of T_α

Let f be the eigenfunction of T_α as defined above.

Theorem

f is injective.

Theorem

$f^{-1}(\mathcal{B}(S^1)) = \mathcal{B}(X)$.

Proof.

The sets $\mathcal{G} = \{f(I) : I \text{ is an interval}\}$ generates $f^{-1}_\alpha(\mathcal{B}(S^1))$ and since f is injective, \mathcal{G} separates points. By Blackwell’s theorem, this is sufficient to show that it generates $\mathcal{B}(X)$.

Eigenfunction of T_α

Let f be the eigenfunction of T_α as defined above.

Theorem

f is injective.

Theorem

$f^{-1}(\mathcal{B}(S^1)) = \mathcal{B}(X)$.

Proof.

The sets $\mathcal{G} = \{f(I) : I \text{ is an interval}\}$ generates $f_{\alpha}^{-1}(\mathcal{B}(S^1))$ and since f is injective, \mathcal{G} separates points. By Blackwell’s theorem, this is sufficient to show that it generates $\mathcal{B}(X)$.

$\nu = m \circ f^{-1}$ is a rank-one measure on the circle that is invariant under the rotation!
Invariant measures on \mathbb{S}^1.

- The Lebesgue measure m on the circle is also invariant under the rotation
Invariant measures on \mathbb{S}^1.

- The Lebesgue measure m on the circle is also invariant under the rotation.

- **Case 1:** If X has finite measure, then $\nu = cm$ for some constant c since an irrational rotation has a unique finite invariant measure up to a constant.
Invariant measures on S^1.

- The Lebesgue measure m on the circle is also invariant under the rotation.

Case 1: If X has finite measure, then $\nu = cm$ for some constant c since an irrational rotation has a unique finite invariant measure up to a constant.

Case 2: If X has infinite measure, then ν is an infinite measure on the circle that is invariant under rotation. A finite invariant measure for an ergodic transformation cannot have an equivalent infinite invariant measure. In fact, ergodicity gives $\nu \perp m$.
Isomorphism

Since f is injective and “surjective” (ν a.e.) onto \mathbb{S}^1, it provides an isomorphism between T_α and R_α

\[T_\alpha \]

\[(X, m) \quad \rightarrow \quad (X, m) \]

\[f \]

\[\downarrow \]

\[(\mathbb{S}^1, \nu) \quad \rightarrow \quad (\mathbb{S}^1, \nu) \]

\[R_\alpha \]
In the finite case, T_α is isomorphic to the rotation under Lebesgue measure. Therefore, T_α gives an explicit cutting and stacking construction for the rotation. Although it is known that rotations are rank-one, this explicit construction has not been shown before.
Conclusions

Theorem

Suppose α is an irrational number not of golden type. Then we can explicitly construct a rank-one transformation T_α from a subset $X \subset \mathbb{R}$ to itself with the following properties:

1. There is an L^∞ eigenfunction f_α with eigenvalue $e^{2\pi i \alpha}$. Hence, T_α is not weakly mixing.
2. The eigenfunction is injective.
3. T_α is totally ergodic.
4. T_α is infinite-measure preserving for almost every α.

James Leng, Yelena Mandelshtam Joint work with: Hindy Drillick, Alonso Espinosa Domínguez, Jennifer Jones Advisor: Cesar Silva (VFU)
Open Questions

1. Are the eigenvalues unique?
2. How do these different measures relate to each other?
3. Do they live on fractals?
Acknowledgements

- Cesar Silva
- Hindy Drillick
- Alonso Espinosa-Dominguez
- Jenny Jones
- Steven Miller

Support for the project was provided by National Science Foundation grant DMS-1659037 and the Science Center of Williams College.
Acknowledgements