MATH 104 HOMEWORK 9 SOLUTIONS

(1) Ross 19.8:
(a) Use the Mean Value theorem to prove
\[|\sin x - \sin y| \leq |x - y| \]
for all \(x, y \in \mathbb{R} \).

(b) Show \(\sin x \) is uniformly continuous on \(\mathbb{R} \).

Solutions:
(a) If \(x = y \), then we have \(0 \leq 0 \). Otherwise assume \(x \neq y \) since \(x \) and \(y \) are symmetric in the expression. By Mean Value Theorem, for \(x, y \in \mathbb{R} \), there exists \(a \in (x, y) \) such that
\[f'(a) = \frac{f(y) - f(x)}{y - x}, \]
hence
\[\cos(a) = \frac{\sin(y) - \sin(x)}{y - x}. \]
Therefore
\[|\sin y - \sin x| = |(y - x) \cos a| \leq |y - x|. \]

(b) This directly follows from part (a). For any \(\epsilon > 0 \), let \(\delta = \epsilon \), then for any \(x, y \in \mathbb{R} \) with \(|x - y| < \delta \), we have
\[|f(x) - f(y)| \leq |x - y| < \delta = \epsilon. \]
So this proves uniform continuity on \(\mathbb{R} \).

(2) Ross 28.3
(b) Let \(f(x) = x^{1/3} \) for \(x \in \mathbb{R} \) and use the definition of derivative to prove \(f'(x) = \frac{1}{3}x^{-2/3} \) for \(x > 0 \).
(c) Is the function \(f \) in part (b) differentiable at \(x = 0 \)? Explain.

Solutions:
(b) When \(y, x \neq 0 \) and \(x \neq y \), we have
\[\lim_{y \to x} \frac{f(y) - f(x)}{y - x} = \lim_{y \to x} \frac{\frac{1}{y^{2/3}}}{y^{2/3} + y^{1/3}x^{1/3} + x^{2/3}} = \frac{1}{3x^{2/3}} = \frac{1}{3}x^{-2/3}. \]
\(f \) is not differentiable at \(x = 0 \). Consider the following limit as \(y \to 0 \):
\[\frac{f(y) - f(0)}{y - 0} = \frac{y^{1/3}}{y} = \frac{1}{y^{2/3}}. \]
Since \(\lim_{y \to 0} y^{-2/3} \) does not exist (one can use a sequence \(y_n = \frac{1}{n} \) and see \(y_n^{-2/3} \) goes to \(\infty \)), so \(f \) is not differentiable at \(x = 0 \).

(3) (20 pt) Ross 28.4: Let \(f(x) = x^2 \sin \frac{1}{x} \) for \(x \neq 0 \) and \(f(0) = 0 \).
(a) Use Theorems 28.3 and 28.4 to show \(f \) is differentiable at each \(a \neq 0 \) and calculate \(f'(a) \). Use, without proof, the fact that \(\sin x \) is differentiable and that \(\cos x \) is its derivative.
(b) Use the definition to show \(f \) is differentiable at \(x = 0 \) and \(f'(0) = 0 \).
(c) Show \(f' \) is not continuous at \(x = 0 \).

Solutions:

(a) Since \(\sin x \) is differentiable at any \(x \in \mathbb{R} \) and \(\frac{1}{x} \) is differentiable at \(x \neq 0 \), by Chain rule we have that \(\sin \frac{1}{x} \) is differentiable at \(a \neq 0 \), and

\[
\left(\sin \frac{1}{x} \right)'(a) = -\cos \left(\frac{1}{a} \right) \frac{1}{a^2}.
\]

And since \(x^2 \) is differentiable at any \(x \neq 0 \), then using product of differentiable functions \(x^2 \sin \frac{1}{x} \) is differentiable at \(x \neq 0 \). And by product rule

\[
(x^2 \sin \frac{1}{x})'(a) = 2a \sin \frac{1}{a} + a^2 \cdot (-\cos \frac{1}{a} \frac{1}{a^2}) = 2a \sin \frac{1}{a} - \cos \frac{1}{a}.
\]

(b) Since \(f'(y) - f(0) = \frac{y^2 \sin \frac{1}{y}}{y-0} = y \sin \frac{1}{y} \), therefore

\[
\lim_{y \to 0} \frac{f(y) - f(0)}{y - 0} = \lim_{y \to 0} y \sin \frac{1}{y} = 0.
\]

For the last equality see Exercise 17.9(c) in previous homework. So \(f \) is differentiable at \(x = 0 \) and \(f'(0) = 0 \).
(c) Consider the function given by \(f'(a) = 2a \sin \frac{1}{a} - \cos \frac{1}{a} \) for \(a \neq 0 \) and \(f'(0) = 0 \), we show that \(f' \) is not continuous at \(a = 0 \). Take a sequence \(a_n = \frac{1}{\pi n} \), then \(a_n \to 0 \) and \(f'(a_n) = -1 \) for all \(n \). So \(\lim_{n \to \infty} f'(a_n) = -1 \neq f'(0) \). Therefore \(f' \) is not continuous at 0.

(4) (20 pt) Ross 28.8: Let \(f(x) = x^2 \) for \(x \) rational and \(f(x) = 0 \) for \(x \) irrational.
(a) Prove \(f \) is continuous at \(x = 0 \).
(b) Prove \(f \) is discontinuous at all \(x \neq 0 \).
(c) Prove \(f \) is differentiable at \(x = 0 \).

Solutions:

(a) For any \(\epsilon > 0 \), let \(\delta = \sqrt{\epsilon} > 0 \), then for any \(x \in \mathbb{R} \) with \(|x - 0| < \delta \), we have either \(x \in \mathbb{Q} \) or \(x \notin \mathbb{Q} \). If \(x \in \mathbb{Q} \), then

\[
|f(x) - f(0)| = |x^2| < \delta^2 = \epsilon.
\]

If \(x \notin \mathbb{Q} \), then

\[
|f(x) - f(0)| = 0 < \epsilon.
\]

Therefore \(f \) is continuous at \(x = 0 \).
(b) For any \(x_0 \neq 0 \), take two sequences \((a_n) \) and \((b_n) \), such that \(a_n \in \mathbb{Q} \) and \(b_n \notin \mathbb{Q} \) for all \(n \) and \(\lim a_n = \lim b_n = x_0 \). Then

\[
\lim f(a_n) = \lim a_n^2 = x_0^2 \neq 0
\]
but
\[
\lim_{x \to b_n} f(x) = \lim_{x \to 0} = 0.
\]

So \(f \) is not continuous at \(x_0 \).

(c) Consider \(f(x) = x^2 - \frac{1}{1-x^2} \) for \(x \neq 0 \). If \(x \in \mathbb{Q} \), then \(\lim_{x \to 0} \frac{f(x) - f(0)}{x-0} = \frac{x^2}{x} = x \); if \(x \notin \mathbb{Q} \), then
\[
\lim_{x \to 0} \frac{f(x) - f(0)}{x-0} = \frac{0}{0} = 0 \quad (\text{note here } x \neq 0!).
\]
Therefore
\[
\lim_{x \to 0} \frac{f(x) - f(0)}{x-0} = 0.
\]

So \(f \) is differentiable at \(x = 0 \).

(5) (20 pt) Ross 29.1: Determine whether the conclusion of the Mean Value Theorem holds for the following functions on the specified intervals. If the conclusion holds, give an example of a point \(x \) satisfying (1) of Theorem 29.3. If the conclusion fails, state which hypotheses of the Mean Value Theorem fail.

(a) \(x^2 \) on \([-1, 2]\);
(b) \(\sin x \) on \([0, \pi]\);
(c) \(|x| \) on \([-1, 2]\);
(d) \(\frac{1}{x} \) on \([-1, 1]\).

Solutions:

(a) \(f'(1/2) = 1 = \frac{2^2 - (-1)^2}{2 - (-1)} \);
(b) \(f'(\pi/2) = 0 = \frac{\sin(0) - \sin(\pi)}{0 - \pi} \);
(c) \(f \) is not differentiable at \(x = 0 \in (-1, 2) \), so the hypothesis “\(f \) is differentiable on \((a, b) \)” fails.
(d) \(f \) is not continuous at \(x = 0 \in [-1, 1] \), so the hypothesis “\(f \) is continuous on \([a, b] \)” fails.

(6) Ross 29.4: Let \(f \) and \(g \) be differentiable functions on an open interval \(I \). Suppose \(a, b \) in \(I \) satisfy \(a < b \) and \(f(a) = f(b) = 0 \). Show \(f'(x) + f(x)g'(x) = 0 \) for some \(x \in (a, b) \). Hint: Consider \(h(x) = f(x)e^{g(x)} \).

Solutions: Consider \(h(x) = f(x)e^{g(x)} \), since both \(f \) and \(g \) are differentiable, by product rule and chain rule, \(h(x) \) is differentiable on \(I \), and
\[
h'(x) = f'(x)e^{g(x)} + f(x)e^{g(x)}g'(x) = e^{g(x)}(f'(x) + f(x)g'(x)).
\]
Since \(h(a) = h(b) = 0 \), by mean value theorem, there exists \(x \in (a, b) \) such that
\[
h'(x) = \frac{h(a) - h(b)}{a - b} = 0
\]
and therefore this \(x \) satisfies \(f'(x) + f(x)g'(x) = 0 \).

(7) Ross 29.5: Let \(f \) be defined on \(\mathbb{R} \), and suppose \(|f(x) - f(y)| \leq (x - y)^2\) for all \(x, y \in \mathbb{R} \). Prove \(f \) is a constant function.

Solutions: We show that \(f \) is differentiable and \(f'(x) = 0 \) for any \(x \in \mathbb{R} \). Fix \(x \in \mathbb{R} \) and consider \(\frac{f(x) - f(y)}{x - y} \) for any \(y \neq x \). Since \(|f(x) - f(y)| \leq |x - y|^2\) we have
\[
\left| \frac{f(x) - f(y)}{x - y} \right| \leq |x - y|.
\]
And since \(\lim_{y \to x} |x - y| = 0 \) by comparison we have that

\[
\lim_{y \to x} \left| \frac{f(x) - f(y)}{x - y} \right| = 0.
\]

And this shows \(f'(x) = 0 \). Since \(f'(x) = 0 \) everywhere, \(f \) is a constant function.