(1) Ross 14.1: Determine which of the following series converge. Justify your answers.

(d) \(\sum \frac{n!}{n^4+3} \)

Solutions:
(d) We use ratio test here: since
\[
\lim \left| \frac{a_{n+1}/a_n}{1} \right| = \lim \left| \frac{(n+1)!}{(n+1)^4+3} \cdot \frac{n!}{n^4+3} \right| = \lim (n+1) \frac{(n+1)^4+3}{n^4+3} = \lim (n+1) = +\infty
\]
Therefore \(\sum a_n \) diverges.

(e) \(\sum \frac{\cos^2 n}{n^2} \)
Solutions:
(e) Since \(\cos^2 n \leq 1 \), we apply the comparison test with Example 2:
\[
\sum |a_n| \leq \sum \frac{1}{n^2} < +\infty.
\]
Therefore \(\sum a_n \) converges.

(2) Ross 14.3: Determine which of the following series converge. Justify your answers.

(a) \(\sum \frac{1}{\sqrt{n}} \)

Solutions:
(a) We apply ratio test:
\[
\lim |a_{n+1}/a_n| = \lim \left| \frac{1}{\sqrt{(n+1)!}} / \frac{1}{\sqrt{n!}} \right| = \lim \frac{1}{\sqrt{n+1}} = 0
\]
Therefore \(\sum a_n \) converges.

(e) \(\sum \sin \left(\frac{n\pi}{9} \right) \)
Solutions:
(e) We first show that \(\lim a_n = 0 \) does not hold. Since \(a_{18k+3} = \sin \left(\frac{(18k+3)\pi}{9} \right) = \sin \frac{\pi}{2} \) is a nonzero constant, we find a subsequence of \(a_n \) that has a nonzero limit. Therefore \(\lim a_n = 0 \) does not hold, and by Corollary 14.5, \(\sum a_n \) diverges.

(3) Ross 14.4: Determine which of the following series converge. Justify your answers.

(b) \(\sum [\sqrt{n+1} - \sqrt{n}] \)
Solutions: We first notice the following equality:

\[a_n = |\sqrt{n + 1} - \sqrt{n}| = \frac{\sqrt{n + 1} + \sqrt{n}}{\sqrt{n + 1} + \sqrt{n}} |\sqrt{n + 1} - \sqrt{n}| = \frac{1}{\sqrt{n + 1} + \sqrt{n}} \]

Then using comparison test and Example 2:

\[\sum a_n \geq \sum \frac{1}{2\sqrt{n + 1}} = +\infty \]

we get that \(\sum a_n \) diverges.

(4) Ross 14.7: Prove that if \(\sum a_n \) is a convergent series of nonnegative numbers and \(p > 1 \), then \(\sum a_n^p \) converges.

Solutions: Since \(\sum a_n \) converges, by Corollary 14.5, \(\lim a_n = 0 \). Hence for \(\epsilon = \frac{1}{2} \), there exists \(N \) such that any \(n > N \) we have \(|a_n| < \epsilon \). Since \(a_n \geq 0 \), this is \(0 \leq a_n < 1/2 \) for all \(n > N \). Since \(p > 1 \), \(0 \leq a_n^{p-1} < 1 \), and hence multiplying by \(a_n \geq 0 \) to the inequality, \(0 \leq a_n^p < a_n \) for all \(n > N \). Since \(\sum_{n=N+1}^{\infty} a_n \) converges, by comparison test, \(\sum_{n=N+1}^{\infty} a_n^p \) converges. And therefore adding finitely many terms, \(\sum_{n=1}^{\infty} a_n^p \) converges.

(5) Ross 14.12: Let \((a_n)_{n \in \mathbb{N}} \) be a sequence such that \(\lim \inf |a_n| = 0 \). Prove there is a subsequence \((a_{n_k})_{k \in \mathbb{N}} \) such that \(\sum_{k=1}^{\infty} |a_{n_k}| \leq 0 \).

Solutions: Since \(\lim \inf |a_n| = 0 \), by Theorem 11.7, there is a subsequence \((a_{n_k}) \) such that \(\lim_{N \to \infty} |a_{n_k}| = 0 \).

We extract a subsequence of \(|a_{n_N}| \) by induction. For \(\epsilon_1 = 1 \), there exists \(N_1 \) such that any \(N \geq N_1 \) we have \(|a_{n_N}| < \epsilon_1 = 1 \). In particular, \(|a_{n_N_1}| < 1 \). Apply the same argument, there exists \(N_2 \) such that for any \(N \geq N_2 \), \(|a_{n_N}| < \frac{1}{2} \). If \(N_2 \leq N_1 \), replace \(N_2 \) by \(N_1 + 1 \). Therefore we have \(|a_{n_{N_k}}| < 1/2 \), \(N_2 > N_1 \). Now assume \(a_{n_{N_k}} \) is fixed for \(i = 1, \ldots, k \), then for \(k + 1 \), we find \(a_{n_{N_{k+1}}} \) by the following. For \(\epsilon_{k+1} = 2^{-(k+1)} \), there exists \(N_{k+1} \) such that for all \(N \geq N_{k+1} \), \(|a_{n_N}| < \epsilon_{k+1} \). If \(N_{k+1} \leq N_k \), replace \(N_{k+1} \) by \(N_k + 1 \). So we have \(|a_{n_{N_{k+1}}}| < 2^{-(k+1)} \), \(N_{k+1} > N_k \).

By induction, we have a subsequence \(\{a_{n_{N_k}}\}_{k \in \mathbb{N}}, |a_{n_{N_k}}| < 2^{-k} \). Since a subsequence of a subsequence is still a subsequence, we define the subsequence \((a_{n_k}) \) by taking \(n_k = n_{N_k} \) for all \(k \).

Since the geometric series \(\sum_{k \in \mathbb{N}} 2^{-k} \) converges, by comparison test, \(\sum_{k} a_{n_k} \) also converges (in fact it converges absolutely).

(6) Ross 14.13:

(c) Prove \(\sum_{n=1}^{\infty} \frac{n-1}{2^n} = \frac{1}{2} \). Hint: Note \(\frac{k-1}{2^k+1} = \frac{k}{2^k} - \frac{k+1}{2^k+1} \).

(d) Using (c) to calculate \(\sum_{n=1}^{\infty} \frac{n}{2^n} \).

Solutions:
(c) Using the hint, we rewrite the sum and using cancellation
\[
\sum_{n=1}^{\infty} \frac{n - 1}{2^n+1} = \lim_{N \to \infty} \sum_{n=1}^{N} \frac{n - 1}{2^n+1} = \lim_{N \to \infty} \sum_{n=1}^{N} \left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}} \right) = \lim_{N \to \infty} \left(\frac{1}{2} - \frac{N+1}{2^{N+1}} \right) = \frac{1}{2}.
\]
Here we used \(\lim_{N \to \infty} \frac{N+1}{2^{N+1}} = 0 \).

(d) First of all we multiply (c) by 2 and get
\[
\sum_{n=1}^{\infty} \frac{n - 1}{2^n} = 1.
\]
Then we compute \(\sum_{n=1}^{\infty} \frac{n}{2^n} \) which can be written as the sum of two CONVERGENT series, where the first term is obtained above and the second term is a geometric series:
\[
\sum_{n=1}^{\infty} \frac{n}{2^n} = \sum_{n=1}^{\infty} \frac{n - 1}{2^n} + \sum_{n=1}^{\infty} \frac{1}{2^n} = 1 + 1 = 2.
\]

(7) Ross 15.1: Determine which of the following series converge. Justify your answers.

(a) \(\sum \frac{(-1)^n}{n} \).

Solutions: This is a direct application of the alternating series test. Since \(\left(\frac{1}{n} \right) \) is a decreasing sequence that goes to 0, we know that \(\sum \frac{(-1)^n}{n} \) converges.

(8) Ross 15.4: Determine which of the following series converge. Justify your answers.

(a) \(\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \log n} \)

(c) \(\sum_{n=1}^{\infty} \frac{1}{n(\log n)(\log \log n)} \)

Solutions:

(a) We apply the comparison test. Note that \(\lim_{n \to \infty} \frac{\log n}{\sqrt{n}} = 0 \), therefore there exists \(N \) such that \(\left| \frac{\log n}{\sqrt{n}} \right| < 1 \) for all \(n > N \). Then \(\frac{1}{\sqrt{n} \log n} > \frac{1}{n} \) for all \(n > N \). Since \(\sum \frac{1}{n} \) diverges, \(\sum \frac{1}{\sqrt{n} \log n} \) diverges.

(c) We use integral test. Consider the function \(f(x) = \frac{1}{x(\log x)(\log \log x)} \) on \(x \geq 4 \), which is a nonnegative decreasing function. Compute its integral
\[
\int_{4}^{\infty} f(x) \, dx = \int_{4}^{\infty} \frac{1}{x(\log x)(\log \log x)} \, dx = \log \log x \bigg|_{4}^{\infty} = +\infty.
\]
which diverges. Therefore the series diverges.