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Abstract. We show how the action of the defect Lie algebra on Weyman’s generic ring can be used
to parametrize different choices of higher structure maps for a given free resolution of length three.
Using the split exact case as a starting point, we then revisit the generators and relations of the generic
ring from this perspective. In the process, we give an alternate treatment of the “generic top complex”
for a split exact complex, unifying a number of constructions from previous work. We also obtain a
geometric interpretation of the generic ring in relation to a certain generalized flag variety, and we
find a close relationship between the generic rings for linked formats.
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1. Introduction

Given a ring R and a finite free resolution

F∶0→ Fm
dmÐ→ ⋯→ F1

d1Ð→ F0,

where Fi = R f i , we refer to the sequence ( f0, f1, . . . , fm) as the format ofF. In the event that R is local
and F is minimal, the fi are the ordinary Betti numbers of the module H0(F), but we will benefit
fromworking in greater generality. Resolutions of format (1, n, n− 1) are described by the following
theorem, first proven by Hilbert over polynomial rings and then later by Burch in generality:

Theorem (Hilbert-Burch). LetRuniv be the polynomial ring on the variables xi , j (1 ≤ i ≤ n, 1 ≤ j ≤ n−1)
and another variable u. Consider the complex

Funiv∶0→ Rn−1
univ

d2Ð→ Rn
univ

d1Ð→ Runiv
1
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where d2 = [xi , j] is the generic matrix in the variables xi , j and (d1)1,k is (−1)ku times the k-th (n −
1) × (n − 1)minor of d2. Then

(1) Funiv is acyclic, and
(2) for any other resolution F of format (1, n, n − 1) over some ring R, there exists a (unique) map

Runiv → R such that F = Funiv ⊗Runiv R.

Technically, the classical statement ofHilbert-Burch is only the latter point. Thefirst claimmoreso
shows the robustness of the theorem: since Funiv is the universal example of a (1, n, n− 1) resolution,
the Hilbert-Burch theorem is the best possible equational structure theorem for these resolutions.

The goal of finding structure theorems akin to Hilbert-Burch for other formats can thus be re-
cast in terms of searching for universal resolutions. This was a project laid out by Hochster in [9].
However, Bruns [2] showed that for resolutions of length greater than two, requiring Runiv → R to
be unique for a given F is too stringent. Relaxing this condition, he proved:

Theorem (Bruns [2, Theorem 1]). Let r1, . . . , rm be nonnegative integers and let fi = ri + ri+1 for
i = 0, . . . ,m − 1 and fm = rm. There exists a complex Fgen of format ( f0, . . . , fm) over a ring Rgen such
that

(1) Fgen is acyclic, and
(2) for any other resolution F of the same format over a ring R, there exists a homomorphism

Rgen → R such that F = Fgen ⊗Rgen R.
We say that (Rgen,Fgen) is generic for the given format.

While this settles the question of existence, the substance of e.g. Hilbert-Burch is not so much
the existence of the universal example, but rather its explicit description. So if we hope to extract
concrete structure theorems from the study of generic free resolutions, we should strive to explicitly
understand the generators and relations of the generic rings.

Our case of interest will be resolutions of length three. For such resolutions over C-algebras,
Weyman constructed a generic pair (R̂gen,Fgen) in [16] for each format ( f0, f1, f2, f3). Note that
because the uniqueness condition was dropped in (2), there may be non-isomorphic generic rings
for the same format, so we use the notation R̂gen to denote Weyman’s construction specifically.
The acyclicity of Weyman’s Fgen was not proven until much later, in [17]. The key insight was

understanding the role played by a certain Kac-Moody Lie algebra g in the construction of R̂gen.
Although we will not actually use the acyclicity of Fgen at any point in this paper, the Lie algebra g
will be essential for understanding R̂gen explicitly, which is one of our main goals.
This Lie algebra will be discussed in §3 in more detail, but for now we comment that R̂gen is

Noetherian exactly when g is finite-dimensional, i.e. of Dynkin type. The corresponding formats
( f0, f1, f2, f3), enumerated below in Table 1, are called Dynkin formats. There are up to six per
Dynkin type—fewer if the Dynkin diagram has symmetric arms.

In order to explain the structure of R̂gen, we must first recall some basic results about Lie algebras
in §2. Then in §3, we revisit the construction of R̂gen, focusing on the action of the defect Lie algebra
introduced in [16] which acts on R̂gen by derivations. We show that the exponential of this action
can be used to relate different choices of maps R̂gen → R specializing Fgen to a fixed resolution F over
R.
In particular, once one has a particular choice ofw∶ R̂gen → R forF, this allows the parametrization

of all choices in terms ofw. In the language of existing literature such as [11], this gives formulas for
the “generic higher structure maps” v(i)j given a specific w(i)j .
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Table 1. Length three formats with Noetherian R̂gen

Type Dn Type E6 Type E7 Type E8

(1, n, n, 1) (1, 5, 6, 2) (1, 6, 7, 2) (1, 7, 8, 2) Format I (dual to VI)
(1, 4, n, n − 3) (1, 5, 7, 3) (1, 5, 8, 4) Format II (linked to I)
(n − 3, n, 4, 1) (2, 6, 5, 1) (3, 7, 5, 1) (4, 8, 5, 1) Format III (dual to II)

(2, 5, 5, 2) (3, 6, 5, 2) (4, 7, 5, 2) Format IV (linked to III)
(2, 5, 6, 3) (2, 5, 7, 4) Format V (dual to IV)
(2, 7, 6, 1) (2, 8, 7, 1) Format VI (linked to V)

Unfortunately, given an arbitrary resolution F, we lack efficient ways of computing higher struc-
ture maps w(i)j for F (equivalently, finding a homomorphism R̂gen → R specializing Fgen to F). But
in §4 we will show that this is quite easy in some special cases. This includes the case that F is a split
exact complex.

The study of maps R̂gen → R gives us one method of probing the generators and relations which
define R̂gen. In §6 we demonstrate how the observations from §3 and §4 allow us to restate a result
from [17] describing the relations which hold in R̂gen. For Dynkin formats, we find a subring of R̂gen
whose spectrum is the affine cone over a generalized flag variety. We also observe that the generic
rings for “linked formats” (see Table 1) share a subring.

In forthcoming papers, we will apply the techniques and results of this paper to study the linkage
and structure theory of grade three perfect ideals I ⊂ R with the property that R/I can be resolved
by a resolution of Dynkin format. The main conjecture we intend to prove regarding linkage is the
following, to whichTheorem 6.10 is a precursor.

Conjecture 1.1 (Licci conjecture). Let I be a perfect ideal of grade 3 in a local Gorenstein C-algebra
R. Let F be a minimal free resolution of R/I. If the format of F is Dynkin, then I is in the linkage class
of a complete intersection (licci).

TheDynkin assumption is necessary, as perfect ideals of grade three are otherwise not necessarily
licci. A simple example is I = (x , y, z)2 ⊂ R = C[x , y, z](x ,y,z). The resolution of R/I in this case has
format (1, 6, 8, 3) of type Ẽ7 and the ideal I is perfect but not licci. In fact Conjecture 1.1 is sharp: in
[7, Theorem 3.2] it is shown that for every non-Dynkin format, there exists a non-licci perfect ideal
of grade 3 in C[x1, . . . , xn](x1 ,...,xn) whose minimal free resolution has that format.
We also intend to prove the following conjecture providing a finite family of generic examples for

perfect ideals with Dynkin resolutions. It is a refinement of the “Genericity conjecture” appearing
in places such as [18]. Given a Dynkin format (1, f1, f2, f3), let Xw ⊂ G/Px1 be the codimension three
Schubert variety defined in Theorem 6.8, and let [v] ∈ G/Px1 be the B+-fixed point, i.e. the highest
weight line in the Plücker embedding in P(V(ωx1)).
For each [σ] ∈WPz1 /W/WPx1 with [σ] ≠ [e] (where e ∈W is the identity), we take a representative

σ ∈ W of [σ] and consider the point σ ⋅ [v] ∈ G/Px1 . The local ring S[σ] = OG/Px1 ,σ ⋅[v] is isomorphic
to a polynomial ring localized at the ideal of variables. The point σ ⋅ [v] also lies in Xw ; let I[σ] ⊂ S[σ]
be the defining ideal of Xw at this point.

Conjecture 1.2 (Local genericity conjecture). Suppose I is a perfect ideal of grade 3 in a local C-
algebra R such that R/I has a (not necessarily minimal) resolution of Dynkin format (1, f1, f2, f3).
Then there exists a unique [σ] ∈WPz1 /W/WPx1 , [σ] ≠ [e], such that there exists a local homomorphism
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φ∶ S[σ] → R such that φ(I[σ])R = I. Note that since I[σ] and I are both perfect ideals of grade three, the
resolution of S[σ]/I[σ] specializes to one for R/I via φ.

These Schubert varieties Xw were studied in [15], with the expectation that they would be closely
related to R̂gen. There is indeed a deep connection between them, which we will explain in The-
orem 6.8. In [13], the resolutions for Xw restricted to the opposite big open cell were constructed.
Localizing at the “origin” of this affine patch, which is to say the B−-fixed point inG/Px1 , one obtains
the resolution for S[w0]/I[w0] where w0 ∈W is the longest element.
The author is deeply thankful to David Eisenbud for introducing him to this topic, and to Jerzy

Weyman and Lorenzo Guerrieri for fruitful discussions which were essential in motivating many of
the results in this paper.

2. Background on Lie algebras

We first summarize some basic results on Lie algebras that will be needed throughout the rest of
the paper. Sections §3 and §4 mostly do not depend on the material here, so the reader may skip
ahead and refer back as needed. However, §6 will use Lie algebras and representation theory more
heavily.

Fix positive integers p, q, r and let T = Tp,q,r denote the graph

xp−1 ⋯ x1 u y1 ⋯ yq−1

z1

⋮

zr−1
Let n = p + q + r − 2 be the number of nodes. From the above graph, we construct an n × n matrix
A, called the Cartan matrix, whose rows and columns are indexed by the nodes of T :

A = (ai , j)i , j∈T , ai , j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2 if i = j,
−1 if i , j ∈ T are adjacent,
0 otherwise.

2.1. Construction of the Kac-Moody Lie algebra. The matrix A defined above has rank n unless
the graph T is one of the affine Dynkin diagrams Ẽn. For simplicity we will assume this is not the
case. We are primarily interested in when T is one of the (ordinary) Dynkin diagrams Dn or En.

Let h = Cn, and take Π = {αi}i∈T in h∗ to be the coordinate functions. These are the simple roots.
Let Π∨ = {α∨i }i∈T be elements of h such that

⟨α∨i , α j⟩ = ai , j.
These are the simple coroots. The Kac-Moody Lie algebra g(T) is generated by elements ei , fi for
i ∈ T , subject to the defining relations

[ei , f j] = δi , jα∨i ,
[h, ei] = ⟨h, αi⟩ei , [h, fi] = −⟨h, αi⟩ fi for h ∈ h,

[h, h′] = 0 for h, h′ ∈ h,
ad(ei)1−a i , j(e j) = ad( fi)1−a i , j( f j) for i ≠ j.
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For brevity, we will often just write g for g(T). Under the adjoint action of h, the Lie algebra g
decomposes into eigenspaces as g =⊕gα, where

gα = {x ∈ g ∶ [h, x] = α(h)x for all h ∈ h}.
This is the root space decomposition of g. LetQ ⊂ h∗ be the lattice⊕i∈T Zαi . If gα ≠ 0, then necessarily
α ∈ Q. If such an α is nonzero, we say it is a root. We note that the Lie algebra g is Q-graded. Using
the homomorphism Q → Z sending each αi ↦ 1, we can coarsen this to a Z-grading, called the
principal gradation on g. In this grading, g0 = h, and we let g+, g− denote the positive and negative
parts respectively. We write b+, b− for the nonnegative and nonpositive parts (i.e. b+ = h+g+); these
are (opposite) Borel subalgebras.

2.2. Representations. Let V be a representation of g, or equivalently a g-module. For λ ∈ h, define
the λ-weight space of V to be

Vλ = {v ∈ V ∶ h ⋅ v = λ(h)v for all h ∈ h}.
IfVλ ≠ 0, then we say λ is aweight ofV . A nonzero vector v ∈ Vλ is a highest weight vector if g+ ⋅v = 0.
If such a v generates V as a g-module, then we say V is a highest weight module with highest weight
λ.
Let U denote the universal enveloping algebra functor. Given λ ∈ h∗, the Verma module M(λ) is

defined to be
M(λ) = U(g)⊗U(b+) Cλ .

Here Cλ is the b+-module where h acts by λ and g+ acts trivially. All the weights of M(λ) are in
λ + Q. If v ∈ Vλ is a highest weight vector, then there is a map M(λ) → V sending 1 ↦ v. If V is a
highest weight module then this map is surjective.

EveryVermamoduleM(λ) has a uniquemaximal proper submodule J(λ). It follows thatV(λ) =
M(λ)/J(λ) is an irreducible highest weight module with heighest weight λ, and any such module
is isomorphic to V(λ).
Let ωi ∈ h∗ be the basis dual to α∨i . Explicitly, ωi is the linear combination of αi given by the

i-th column of A−1. These are the fundamental weights, and the representations V(ωi) are called
fundamental representations.
One can alternatively work with lowest weights instead of highest weights, replacing g+, b+ by g−,

b− in all of the preceding.

2.3. The grading induced by a node of Tp,q,r. As mentioned previously, the Lie algebra g is Q-
graded, where Q =⊕i∈T Zαi . Let I ⊆ T . Consider the group homomorphism

⊕
i∈T

Zαi →⊕
i∈I

Zαi

which sends αi to itself if i ∈ I and zero otherwise. This coarsens the Q ≅ Zn-grading on g to a
Z∣I∣-grading.

We will be interested in the case that I = {t} is a singleton set, so the result is a Z-grading on g,
which we will call the t-grading. Let hi ∈ h be the basis dual to αi . Explicitly, hi is the linear combi-
nation of α∨i given by the i-th column of A−1. The Z-grading induced by t ∈ T is the decomposition
of g into eigenspaces for the adjoint action of ht :

g =⊕
k∈Z

ker(ad(ht) − k).

The k = 0 component has the form

ker ad(ht) = g(t) ⊕Cht
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where g(t) is the Lie algebra generated by {ei , fi}i≠t , i.e. the Lie algebra corresponding to the diagram
T − {t}.
Let v ∈ V(λ) be a highest weight vector, and let at = ⟨ht , λ⟩. Then ht ⋅v = atv, and the eigenvalues

for the action of ht onV(λ) are at , at−1, . . .. This list terminates iffV(λ) is finite-dimensional. Each
eigenspace is a finite-dimensional representation of the subalgebra g(t) × Cht . In particular, v is a
highest weight vector for the eigenspace with value at , thus this top component is the fundamental
representation of g(t) with highest weight∑i≠t ciωi if λ = ∑i∈T ciωi .

Example 2.1. Consider T2,3,3 = E6, and let t = z1. The diagram E6 − {z1} consists of the A4 diagram
y2, y1, u, x1 and the A1 diagram z2. So if we let F = C5 and F ′ = C2, the subalgebra g(t) is sl(F) ×
sl(F ′).
The decomposition of g is

ker(ad(ht) − 2) =
4
⋀ F ⊗

2
⋀ F ′∗

ker(ad(ht) − 1) =
2
⋀ F ⊗ F ′∗

ker(ad(ht) − 0) = sl(F)⊕ sl(F ′)⊕Cht

ker(ad(ht) + 1) =
2
⋀ F∗ ⊗ F ′

ker(ad(ht) + 2) =
4
⋀ F∗ ⊗

2
⋀ F ′

As another example, consider the fundamental representation V(ωz2). The coefficient of αt in ωz2
is 5/3, and the representation decomposes into eigenspaces for ht as

ker(ht − 5/3) = F ′

ker(ht − 2/3) =
3
⋀ F

ker(ht + 1/3) = F ′ ⊗ F
ker(ht + 4/3) = F∗.

By slight abuse of notation, here ht refers to the action of ht on the representation.

3. Parametrizing higher structure maps

All rings considered throughout this paper are C-algebras. Fix a format ( f0, f1, f2, f3) and let
ri = ∑3

j=i(−1) j−i f j denote the rank of the differential di in any resolution of the given format. For
each such format, Weyman constructed the pair (R̂gen,Fgen) in [16] and proved its genericity in [17],
meaning that for any resolution (R,F) of the given format, there exists a mapw∶ R̂gen → R for which
F = Fgen ⊗ R.

The map w is not uniquely determined by the resolution F. This is an inevitable feature of the
construction, as Bruns showed this is necessarily the case for any generic ring for formats of length
at least three [2, Theorem 2]. As such, it is natural to ask how different choices of w for the same F
are related to one another. For this, we need to briefly recall the construction of Weyman’s R̂gen. We
refer the reader to [16, §2] for details.
One starts with the Buchsbaum-Eisenbud multiplier ring Ra. A resolution (R,F) determines a

unique map Ra → R; this is just the statement of the First Structure Theorem in [4]. The ring Ra
carries a complex Fa which is the generic example of a complex acyclic in codimension one.
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To obtain Fgen from Fa, we need to increase the depth of I(d3) from two to three. This is achieved
by killing H2 in the Koszul complex

0→
0
⋀K →

1
⋀K →

2
⋀K →

3
⋀K

where K = ⋀r3 F∗3 ⊗⋀r3 F2. This process is performed inductively using the defect Lie algebra L, by
adjoining variables for the coordinates of pi according to the diagram below:

(3.1)
0 ⋀0K ⋀1K ⋀2K ⋀3K

L∗i (⋀2L∗)i

p i q i

(Here L really denotes the tensor product of L with the ring already constructed.) The lower hori-
zontal map is dual to the bracket inL and themap qi is defined from lower pi . Themap q1 is defined
using the Second Structure Theorem of [4].

After adjoining the coordinates of p1, . . . , pm, quotienting by appropriate relations, and taking an
ideal transform, one obtains the ring Rm. The ring R̂gen is then defined to be the direct limit of the
rings Rm.
We have skimmed over a lot of details, but the important point is that a resolution (R,F) together

with a choice of structure maps pi for F in accordance with the diagram above determines a map
R̂gen → R. Here one sees the non-uniqueness mentioned before: after having computed p1, . . . , pi−1,
there is a Hom(L∗i , R) of choices for the map pi . In other words, Li records the failure of the map
pi to be uniquely determined—hence the name “defect” Lie algebra.
In [16], it is shown how elements u ∈ Ln act on R̂gen by Rn−1-linear derivations1. It is sufficient to

describe how they affect (the coordinates of) pn+k for k ≥ 0, and this is as follows: the derivation Du
sends p∗n to

K∗ ⋀
r3 d∗3ÐÐÐ→ R̂gen

uÐ→ Ln ⊗ R̂gen

and p∗n+k to

K∗
p∗kÐ→ Lk ⊗ R̂gen

[u,−]ÐÐ→ Ln+k ⊗ R̂gen.
These are just restatements of the formulas given in [16, Prop. 2.11] and [16, Thm. 2.12] respectively.

These formulas naturally extend to an arbitrary element X ∈ L =∏i>0Li ; the resulting derivation
is well-defined because L>n acts by zero on Rn. In a slight abuse of notation, we will also write X
for the corresponding derivation. Homomorphisms R̂gen → R correspond to R-algebra homomor-
phisms R̂gen ⊗ R → R, and the Lie algebra L⊗ R acts on R̂gen ⊗ R.

For X ∈ L ⊗ R, the action of expX ∶= ∑i≥0
1
i!X i on R̂gen ⊗ R is well-defined since every element

of R̂gen ⊗ R is killed by a sufficiently high power of X. Since X acts by an (Ra ⊗ R)-linear deriva-
tion, it follows formally that expX acts by an automorphism fixing Ra ⊗ R. Such automorphisms
completely describe the non-uniqueness of the map R̂gen → R given a particular resolution (R,F),
as the following result shows.

Theorem 3.1. Let F be a resolution of length three over R and let R̂gen be the generic ring for the asso-
ciated format. Fix aC-algebra homomorphism w∶ R̂gen → R specializing Fgen to F. Then w determines

1Note that we write Li here for qi in that paper.
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a bijection

L⊗ R ≃ {C-algebra homomorphisms w′∶ R̂gen → R specializing Fgen to F}.

Note that a C-algebra homomorphism R̂gen → R can be viewed as an R-algebra homomorphism
R ⊗ R̂gen → R. The correspondence above identifies X ∈ L ⊗ R with the map w expX obtained by
precomposing w with the action of expX on R ⊗ R̂gen.

Proof. Thehomomorphismw∶ R̂gen⊗R → R is completely determined by the choice of the structure
maps pi . For X ∈ L ⊗ R, let us write X = ∑i>0 ui where ui ∈ Li , and let Xn = ∑n

i=1 ui denote the
partial sums.

Precomposing w by expX or expXn has the same effect on the structure maps pk for k ≤ n.
Acting by expX on p1, we get

p1 + (
r3
⋀ d3)u∗1 .

Here u∗1 means the dual of R u1Ð→ L ⊗ R. All possible choices of the structure map p1 are obtained
by lifting a particular map q1 in the diagram (3.1), so it follows that choices of u1 ∈ L1 correspond to
choices for the structure map p1.

In general, acting by expX on pn gives

(pn + pn−1[u1,−]∗ +⋯) + (
r3
⋀ d3)u∗n .

Thefirst part consists of terms involving uk for k < n. Once again, (3.1) shows that choices of un ∈ Ln
correspond to choices for the structure map pn. Proceeding inductively in this fashion, we get the
desired statement. □

In the sequel we will not be so concerned with the structure maps pi—rather, we will apply The-
orem 3.1 to study a different family of structure maps that exist in R̂gen. Let p = f0 + 1, q = f1 − f0 − 1,
and r = f3 + 1, and let g = g(Tp,q,r) be the Kac-Moody Lie algebra associated to the graph Tp,q,r, as
defined in §2. Let Fi = C f i . The graph T − {z1} consists of

yq−1 ⋯ y1 u x1 ⋯ xp−1,

which we take to be sl(F1), and
z2 ⋯ zr−1

which we take to be sl(F3). Hence in the z1-grading on g and its representations, each component
is a representation of sl(F3) × sl(F1) ×Chz1 , c.f. §2.3.

The connection to the preceding theory is that, with this setup, the defect Lie algebra L is exactly
the negative part of g and the previously described action of L on R̂gen extends to an action of g.
This was instrumental in proving the acyclicity of Fgen in [17].

Example 3.2. For the format (1, 5, 6, 2), the graph Tp,q,r is T2,3,3 = E6. The defect Lie algebra has two
graded components: F3 ⊗⋀2 F∗1 and ⋀2 F3 ⊗⋀4 F∗1 . This is the negative part of g as written out in
Example 2.1.

Inside of the ring R̂gen, there exist three representations of sl(F2) × sl(F0) × g(Tp,q,r) of particu-
lar interest, namely those generated by the entries of the differentials di . We call them the critical
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representations; they are

W(d3) = F∗2 ⊗ V−(−ωzr−1) = F∗2 ⊗ [F3 ⊕
r0+1
⋀ F1 ⊕⋯]

W(d2) = F2 ⊗ V−(−ωyq−1) = F2 ⊗ [F∗1 ⊕ F∗3 ⊗
r0
⋀ F1 ⊕⋯]

W(d1) = F∗0 ⊗ V−(−ωxp−1) = F∗0 ⊗ [F1 ⊕ F∗3 ⊗
r0+2
⋀ F1 ⊕⋯]

Here V−(−λ) denotes the fundamental representation of g with lowest weight −λ, and similarly for
the others. Note that if this representation is finite-dimensional, then V−(−λ) and V(λ) are dual to
one another; in general one needs to take the graded dual instead. The bottom two components of
each representation in the z1-grading have been indicated above.
Given a map w∶ R̂gen → R for a complex (R,F), we denote by w(i) the restriction of w to the

representation W(di) ⊂ Rgen, and by w(i)j the restriction to the j-th graded component of that
representation, counted from the bottom—so for instance w(i)0 is2 the differential di . We call the
mapsw(i)>0 (a specific choice of) higher structure maps for F. Theorem 3.1 shows explicitly howL⊗R
parametrizes choices of such maps.

Example 3.3. Consider a free resolution F of format (1, f1, f2, f3) resolving R/I where depth I ≥ 2.
The structure maps w(i)1 give a choice of multiplicative structure on F; see [11, Prop. 7.1]. Explicitly,
such a resolution has the (non-unique) structure of a commutative differential graded algebra, and
the non-uniqueness is evidently seen from the fact that themultiplication⋀2 F1 → F2 may be chosen
as any lift in the diagram

(3.2)
0 F3 F2 F1 R

⋀2 F1

where the map ⋀2 F1 → F1 is given by e1 ∧ e2 ↦ d1(e1)e2 − d1(e2)e1. Indeed, we have that L1 =
F3 ⊗⋀2 F∗1 , which is exactly the non-uniqueness witnessed here.
Now suppose thatw∶Rgen → R (equivalently, R⊗Rgen → R) is one choice of higher structuremaps

forF, and take an element X = ∑i>0 ui ∈ L⊗R using the same notation as before. Letw′ = w exp(X),
i.e.

w′ = w (1 + u1 + (
1
2
u2
1 + u2) +⋯)

Note that uk maps W(di) j to W(di) j−k. If we restrict the above equation to the representation
W(d3) and expand it degree-wise, we get

w′(3)0 = w(3)0

w′(3)1 = w(3)1 +w
(3)
0 u1

w′(3)2 = w(3)2 +w
(3)
1 u1 +w(3)0 (

1
2
u2
1 + u2)

⋮

2Technically this definition gives a map w(i)0 ∶ Fi ⊗ F∗i−1 → R rather than Fi → Fi−1, but this is evidently the same
data—we will often abuse notation in this manner and implicitly adjust the source/target of maps as is convenient.
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The first equation reflects that the underlying complex is still the same F. The next equation shows
that the new multiplication, viewed as a map F∗2 ⊗ ⋀2 F1 → R, was obtained from the old one by
adding the composite

F∗2 ⊗
2
⋀ F1

1⊗u1ÐÐ→ F∗2 ⊗ F3
d3Ð→ R.

Here u1 ∈ L1 = F3 ⊗⋀2 F∗1 could’ve been any map ⋀2 F1 → F3, and this exactly matches what we see
in (3.2).

4. The graded setting

We have shown how, starting from a particular choice of higher structure maps w∶ R̂gen → R for
a resolution (R,F), it is possible to obtain all other choices of w using the exponential action of
L⊗R. However, we still lack satisfactory methods for computing a specificw in the first place. This
is addressed for the type Dn formats (1, n, n, 1) and (1, 4, n, n − 3) in [12]. For arbitrary formats, a
couple of structure maps w(i)j for small j are treated in [8], but as the reader can see there, if one
wants to do this for arbitrary formats, the situation rapidly balloons in difficulty as j increases.

Note that the structure maps pi which determine the map R̂gen → R are defined inductively via
lifting. Thus if the resolution F is graded with differentials homogeneous of degree zero, then it is
possible to choosemaps pi respecting this grading aswell. To precisely leverage this, it is necessary to
state the components ofL and the higher structuremapsGL(Fi)-equivariantly and not just SL(Fi)-
equivariantly. Let Mi = ⋀ f i Fi and M = M1 ⊗M∗2 ⊗M3. In [16], we see that p1 is really a map

r1+1
⋀ F1 ⊗ F∗3 ⊗M∗ → K =

r3
⋀ F∗3 ⊗

r3
⋀ F2.

In particular L1 ≅ ⋀r1+1 F∗1 ⊗ F3 ⊗M as a representation of∏GL(Fi).
Remark 4.1. TheBuchsbaum-Eisenbudmultiplier a1 is an injective mapM → M0. In the event that
F resolves R/I where depth I ≥ 2, a1 yields an isomorphism M ≅ R. This setting is the primary one
of interest, and the identificationM ≅ R has been implicitly made in much of the existing literature.
This is the case for the decompositions of critical representations tabulated in [11]; to have these
descriptions hold more generally, the jth graded component should be tensored with M⊗(− j).

Although the observation that we can pick graded structure maps is elementary, it offers great
mileage.

Example 4.2. Suppose that F is a graded resolution over a nonnegatively graded ring R. If all gen-
erators of L1 are in positive degrees, then there is a unique choice of graded higher structure maps,
and moreover these structure maps w(i)j , p j are zero for j≫ 0 by degree considerations.

Example 4.3. Let R = C[x1, . . . , xn] with deg(xi) > 0, and let I ⊂ R be a grade three perfect ideal. If
0→⊕R(−b3 j)→⊕R(−b2 j)→⊕R(−b1 j)→ R

is a graded minimal free resolution of I, and
(4.1) max{b3 j} ≤ 2min{b1 j}
thenL1 is generated in negative degrees, and the entries of all higher structuremapswill have strictly
positive degree—in particular, all structure maps will be zero mod (x1, . . . , xn). By [10], the condi-
tion (4.1) also implies I is not licci, hinting at a connection between higher structure maps w(i)j and
linkage. This is studied explicitly in [8] for small values of j and will be generalized in a forthcoming
paper.
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We will use Example 4.2 in the following special case. Suppose that R is an arbitrary (ungraded)
C-algebra but that the differential d3 of F is a split inclusion. After choosing a splitting, F can be
written as

0→ F3

⎡⎢⎢⎢⎢⎢⎣

I
0

⎤⎥⎥⎥⎥⎥⎦ÐÐ→ F3 ⊕ C
[0 d2]
ÐÐÐÐ→ F1 → F0.

We can view this as a graded resolution where R,C , F1, F0 are entirely concentrated in degree 0, but
F3 is in degree 1.

Lemma 4.4. Suppose that d3 of F is a split inclusion. Then there is a choice of higher structure maps
w(i)>0 for F in which only w(3)1 and w(2)1 are nonzero.

Proof. We view F with the grading described above and choose structure maps that are homoge-
neous of degree zero. These will have the desired property as we can see from degree considerations:
W(d1) j is concentrated in degree − j, whileW(d2) j andW(d3) j are concentrated in degrees − j and
− j + 1 since F2 = C ⊕ F3 is in degrees 0 and 1. □

In [11, Prop. 7.1] it is shown how the structure maps w(3)1 and w(2)1 can be computed via a com-
parison map from a Buchsbaum-Rim complex. We restate the lifting explicitly here, both for the
sake of completeness and also to clarify the role played by M, since the identification M ≅ R was
implicitly made in [11]. The First Structure Theorem in [4] gives a factorization

⋀r1 F1 ⋀r1 F0

M

⋀r1 d1

a1

in particular a map β∶M∗ ⊗⋀r1 F1 → R, which is essentially a∗2 after appropriate identifications. It
is straightforward to check that the composite

M∗ ⊗
r1+1
⋀ F1 → M∗ ⊗

r1
⋀ F1 ⊗ F1

β⊗1ÐÐ→ F1
d1Ð→ F0

is zero, thus we can lift through d2 to obtain a map

w(3)1 ∶M∗ ⊗
r1+1
⋀ F1 → F2.

The difference of the two maps

M∗ ⊗
r1
⋀ F1 ⊗ F2

β⊗1ÐÐ→ F2

M∗ ⊗
r1
⋀ F1 ⊗ F2

1⊗d2ÐÐ→ M∗ ⊗
r1
⋀ F1 ⊗ F1 → M∗ ⊗

r1+1
⋀ F1

w(3)1ÐÐ→ F2
has image landing in ker d2, and thus it can be lifted through d3 to obtain

w(2)1 ∶M∗ ⊗
r1
⋀ F1 ⊗ F2 → F3.

In the case that r0 = 1, thesemaps can be viewed as giving a choice ofmultiplication on the resolution

0→ M∗ ⊗ F3 → M∗ ⊗ F2 → M∗ ⊗ F1
βÐ→ R.

We conclude this section by showing that there is a particularly simple choice of higher structure
maps for a split exact complex.
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Let V1,V2,V3 be the representations of g(Tp,q,r)with lowest weights −ωxp−1 , −ωyq−1 , −ωzr−1 respec-
tively, so that the critical representations areW(d3) = F∗2 ⊗V3,W(d2) = F2⊗V2, andW(d1) = F∗0⊗V1.
As described in §2.3, in the grading induced by x1 ∈ Tp,q,r, each graded component of Vi is a repre-
sentation of g(x1) ×Chx1 , in particular of g(x1). The diagram T − {x1} consists of

yq−1 ⋯ y1 u z1 ⋯ zr−1,

which we take to be sl(F2), and
x2 ⋯ xp−1

which we take to be sl(F0), so we may identify g(x1) with sl(F0) × sl(F2). The bottom graded com-
ponents of V3,V2,V1 are then F2, F∗2 , F0 respectively.

Theorem4.5. There exists aC-algebra homomorphismwssc∶ R̂gen → Cwhose restrictions to the critical
representations are the maps

W(d3) = F∗2 ⊗ [F2 ⊕⋯]→ C
W(d2) = F2 ⊗ [F∗2 ⊕⋯]→ C
W(d1) = F∗0 ⊗ [F0 ⊕⋯]→ C

given by the evident pairing in the bottom x1-graded component, and zero on all higher graded com-
ponents, and Fgen ⊗wssc is a split exact complex.

One striking feature of wssc is the use of the node x1 ∈ T , and the lack of any mention of z1 ∈ T .
Recall that the latter nodewas involved in the defect Lie algebraLwhichwas essential to the original
construction of R̂gen. But as we will see in §6, the node x1 ∈ T actually plays a more distinguished
role in describing R̂gen retrospectively.

Proof. Let C = Cr2 . Then the subgraph of T given by
yq−1 ⋯ y1 u.

yields an inclusion sl(C) ↪ g. In particular we get decompositions F1 = F0 ⊕ C and F2 = F1 ⊕ C,
from which we assemble the following split exact complex:

Fssc∶0→ F3 → F3 ⊕ C → F0 ⊕ C → F0.
We view this as a graded complex where F3 is in degree 1, C is in degree 0, and F0 is in degree −1.
From degree considerations analogous to Lemma 4.4, if we compute w(3)1 and w(2)1 respecting this
grading, then all other higher structure maps are zero. We claim that this choice of higher structure
maps gives the desired homomorphism wssc (note that by construction, Fgen ⊗ wssc = Fssc is split
exact). We have M = ⋀ f1(F0 ⊕ C)⊗⋀ f2(F3 ⊕ C)∗ ⊗⋀ f3 F3 = ⋀ f0 F0. The map

β∶M∗ ⊗
r1
⋀ F1 =

f0
⋀ F∗0 ⊗

f0
⊕
k=0
(
f0−k
⋀ F0 ⊗

k
⋀C)→ R

contracts ⋀ f0 F∗0 ⊗⋀ f0 F0 → R and is zero on all other factors.
Let s2∶ F1 → F2 and s3∶ F2 → F3 be the evident splittings of d2 and d3; that is, s(x0, c) = (0, c) for

x0 ∈ F0, c ∈ C, and s3(x3, c) = x3 for x3 ∈ F3, c ∈ C. These maps are homogeneous of degree zero,
thus rather than “homogeneously lifting through di ,” we may just postcompose with si .

Hence we may take w(3)1 to just be the composite

M∗ ⊗
r1+1
⋀ F1 → M∗ ⊗

r1
⋀ F1 ⊗ F1

β⊗1F1ÐÐ→ F1
s2Ð→ F2 = F3 ⊕ C .
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This map sends the factor ⋀ f0 F∗0 ⊗ ⋀ f0 F0 ⊗ C identically to C ⊂ F2, and is zero on all other fac-
tors. This can be verified directly, or one can just note that the map is GL(F0) ×GL(F3) ×GL(C)-
equivariant and nonzero, and C is the only representation appearing in both source and target.

The bottom x1-graded component of V3 is F2 = F3 ⊕ C. The former F3 is the bottom z1-graded
component, mapping to F2 via the differentialw(3)0 = d3. The latter C comes from the next z1-graded
component, and we just saw how w(3)1 maps it to F2. All other parts of the representation map to
zero, so this proves that w(3) has the desired form.

The proofs for w(2) and w(1) are completely analogous, so we omit them. □

5. Generic structure maps and the top complex

In existing literature such as [12] and [8], some of the structure maps w(i)j have been computed
by explicit lifts. When these lifts are not unique, additional variables are adjoined to parametrize
the non-uniqueness to get “generic structure maps” v(i)j which specialize to any particular choice of
w(i)j for the given resolution. We give a reformulation of Theorem 3.1 from this perspective.

Proposition 5.1. Let F be a resolution over R. Let (R̂gen,Fgen) be the generic pair for the associated
format, and w∶ R̂gen → R a map which specializes Fgen to F. Define S to be the polynomial ring R ⊗
Sym(⊕i>0L∗i ). We think of the adjoined variables as giving coordinates on the defect Lie algebra L.
Then there exists a map v∶ R̂gen → S such that maps w′∶ R̂gen → R specializing Fgen to F correspond

to R-algebra maps p making the below diagram commute.

S

R̂gen R

∃!pv

w′

Proof. For each i, Li is finite-dimensional and there exists a “trace” element ui ∈ Li ⊗L∗i . Explicitly
if one takes a basis e1, . . . , en of Li and є1, . . . , єn its dual, then ui = ∑n

j=1 e j ⊗ є j.
SinceL =∏i>0Li , the infinite sum X = ∑i>0 ui is a well-defined element ofL⊗(⊕i>0L∗i ) ⊂ L⊗S,

which we can think of as a “generic element” of L. We define v to be the composite w expX in the
sense of Theorem 3.1.

The correspondence claimed in the proposition follows easily: the map p is just the data of an
element of HomR(R ⊗⊕i>0L∗i , R) = L ⊗ R and the composite pv is the same as w exp p from this
perspective, which reduces the statement to that of Theorem 3.1. □

The variables adjoined to R to obtain S are called defect variables, as they record the failure of
higher structure maps being uniquely determined. Notice that the constructed v specializes Fgen to
F⊗ S, which is to say that v(i)0 = w

(i)
0 ⊗ S.

Example 5.2. The ring S from Proposition 5.1 generalizes the ring defined in e.g. [12, Definition 3.1]
for the formats of type Dn. There, the variables bki j and cut adjoined are bases of L∗1 = ⋀2 F1⊗F∗3 and
L∗2 = ⋀4 F1 ⊗⋀2 F∗3 respectively, which are the only nonzero components of L in that setting.

The explicit formulas for v(i)j given subsequently in that paper can be recovered fromTheorem 3.1
in the manner illustrated in Example 3.3, just taking X to instead be the “generic element” of L⊗ S
as defined in Proposition 5.1 as opposed to any particular element of L⊗ R.
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The preceding discussion applies to all length three formats, but now we will consider a fea-
ture unique to the Dynkin case. For the sake of simplicity, suppose that g for the Dynkin format
under consideration has self-dual representations, i.e. the type is Dn (n even), E7, or E8. (We re-
fer the reader to [18, Proposition 3.7] for adjustments in other cases.) In particular, their bottom
graded components of the representations are dual to the top ones. So written as representations of
∏ SL(Fi), the decompositions of the critical representations are

W(d3) = F∗2 ⊗ V−(−ωzr−1) = F∗2 ⊗ [F3 ⊕
r0+1
⋀ F1 ⊕⋯⊕ F∗3 ]

W(d2) = F2 ⊗ V−(−ωyq−1) = F2 ⊗ [F∗1 ⊕ F∗3 ⊗
r0
⋀ F1 ⊕⋯⊕ F1]

W(d1) = F∗0 ⊗ V−(−ωxp−1) = F∗0 ⊗ [F1 ⊕ F∗3 ⊗
r0+2
⋀ F1 ⊕⋯⊕ F∗1 ]

Given w∶ R̂gen → R specializing Fgen to some resolution F, the bottom graded components w(i)0
of the critical representations give the differentials of F. On the other hand, the restrictions of w to
the top graded components give maps w(3)top ∶ F∗3 → F2, w(2)top ∶ F2 → F∗1 , and w(1)top∶ F∗1 → F0. Weyman
observed that the symmetry of relations in R̂gen implies that these give the differentials of another
complex:

Ftop∶0→ F∗3 → F2 → F∗1 → F0.
As the higher structure maps w(i)>0 are not uniquely determined by F, neither is the complex Ftop.
It is conjectured that if F resolves a Cohen-Macaulay R-module, then there exists a choice of Ftop

that is split exact. The significance of this claim is that, by symmetry of R̂gen, F could be viewed
as a particular choice of “top complex” for a split exact complex. In other words, it would be a
specialization of the generic such top complex defined over the polynomial ring S = Sym(⊕i>0L∗i )
from Proposition 5.1.

Theorems 4.1 and 5.1 in [12] describe the maps v(i)top for a split exact complex in the case of formats
(1, n, n, 1) and (1, 4, n, n − 3). In that paper they are computed by lifting. With our results we can
now provide an alternative construction.

Theorem 5.3. For the split exact complex Fssc from Theorem 4.5, the generic structure maps v(i)top can
be computed as follows. Let X ∈ L⊗ S be the generic element of L. Then v(3)top is the composite

S ⊗ F∗3
itopz1Ð→ S ⊗ V−(−ωzr−1)

exp XÐÐ→ S ⊗ V−(−ωzr−1)
pbottomx1ÐÐÐ→ S ⊗ F2,

v(2)top is the composite

S ⊗ F1
itopz1Ð→ S ⊗ V−(−ωyq−1)

exp XÐÐ→ S ⊗ V−(−ωyq−1)
pbottomx1ÐÐÐ→ S ⊗ F∗2 ,

and v(1)top is the composite

S ⊗ F∗1
itopz1Ð→ S ⊗ V−(−ωxp−1)

exp XÐÐ→ S ⊗ V−(−ωxp−1)
pbottomx1ÐÐÐ→ S ⊗ F0.

Here itopz1 means the inclusion of the top z1-graded piece and pbottomx1 means projection onto the bottom
x1-graded piece.

Proof. In each composite, the third map is wssc as described in Theorem 4.5. Precomposing with
expX gives the generic choice of structure maps by Proposition 5.1, and then we restrict to the top
z1-graded component to get v(i)top. □
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This construction is studied explicitly in [13] for the various Dynkin cases. There it is illustrated
how, for type Dn, it recovers the complexes described in [12]. The explanation for this apparent
coincidence was not given in that paper, but now it is explained byTheorem 5.3.

The complex constructed for (1, n, n, 1) visibly agrees with the generic Buchsbaum-Eisenbud ex-
ample [5]. For (1, 4, n, n − 3), §3.1.3 in [13] recovers the generic example for an almost complete
interesction (see [5], [1]) and explains how it is in some sense equivalent to the complex in [12,
Theorem 5.1]. With Theorem 5.3, we can explain this observed equivalence in another way: [12,
Theorem 5.1] describes the generic top complex for a split complex of format (1, 4, n, n − 3), while
the others give the generic top complex for the dual format (n − 3, n, 4, 1). Since these are generic
examples for resolutions of the given format with acyclic dual, it stands to reason that they must be
equivalent!

For the format (1, 5, 6, 2) of type E6, the generic top complex for a split exact complex is con-
structed in [6]. To be precise, the top complex for (2, 6, 5, 1) is constructed there, but again this
is equivalent to the one for (1, 5, 6, 2). This equivalence is briefly described at the end of [6, §6]
and more explicitly in [13, Theorem 2.5]. The complex is reproduced in [13] via the construction of
Theorem 5.3: compare the matrices given in [6, §3] to those in [13, §3.2].
In [13], it is also discussed how the constructed complexes resolve coordinate rings of certain

Schubert varieties restricted to an affine patch, relating the construction to resolutions studied in
[15]. This connection with Schubert varieties will be further explained in §6.1.

6. Defining relations of R̂gen

Wewill nowmake use of the results from §3 and §4 to analyze the generators and relations of R̂gen.
In other words, we will describe it as a quotient of a polynomial ring over C. For the generators we
will need to consider twomore representations of sl(F0)×sl(F2)×g in addition to the representations
W(di), namely those generated by the entries of the Buchsbaum-Eisenbud multipliers a2 and a1.
We will call theseW(a2) andW(a1) respectively. Altogether we have

W(d3) = F∗2 ⊗ V−(−ωzr−1)
= F∗2 ⊗ [F3 ⊕⋯]

W(d2) = F2 ⊗ V−(−ωyq−1)
= F2 ⊗ [F∗1 ⊕⋯]

W(d1) = F∗0 ⊗ V−(−ωxp−1)
= F∗0 ⊗ [F1 ⊕⋯]

W(a2) =
f2
⋀ F2 ⊗ V−(−ωx1)

=
f2
⋀ F2 ⊗ [

r2
⋀ F∗1 ⊗

f3
⋀ F∗3 ⊕⋯]

W(a1) =
f0
⋀ F∗0 ⊗

f1
⋀ F1 ⊗

f2
⋀ F∗2 ⊗

f3
⋀ F3

As in §3, V−(−λ) denotes the irreducible g-representation with lowest weight −λ. When Tp,q,r is a
Dynkin diagram these are finite-dimensional and isomorphic to V(λ)∗. Here we have displayed
the bottom z1-graded components, which are the entries of di and ai . Note that the representation
W(a1) is a trivial representation of g, though not of∏gl(Fi). Let A1 denote the direct sum of the
above five representations. The next result was communicated to the author by Jerzy Weyman.
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Proposition 6.1. A1 generates R̂gen as a C-algebra.

Proof. The entries of di , ai generate the Buchsbaum-Eisenbud multiplier ring Ra. From the explicit
decomposition of R̂gen given in [17], one sees that every irreducible representation of sl(F0)×sl(F2)×
g in R̂gen has bottom z1-graded component belonging to the subring Ra; this is just the statement
that Ra is the subring of R̂gen on which L acts trivially.
In particular, this means that Ra generates R̂gen as a representation of sl(F0) × sl(F2) × g. This

Lie algebra acts on R̂gen by derivations and A1 is closed under this action. It follows that the subring
generated by A1 is also closed under this action. Since it contains Ra, it must be the entire ring R̂gen
as claimed. □

Next we analyze the relations which hold among the elements of A1. More precisely, let A =
SymC A1, let π∶A → R̂gen be the evident quotient map, and let Î = ker π be the ideal of defining
relations for R̂gen.
The main tool for analyzing the ideal Î is the following result from [16], which we slightly para-

phrase as follows:

Lemma 6.2 ([16, Lemma 2.4]). The relations which hold in R̂gen are exactly those which hold for
arbitrary choices of higher structure maps for split exact complexes.

For example, this result was used heavily in [8] to directly verify explicit relations on higher struc-
ture maps, many of which were checked with computer assistance.

Here we will make use of this result in a more conceptual manner. Theorem 4.5 provides an ex-
plicit description of a particular choice of higher structuremaps for a split exact complex. Moreover,
Theorem 3.1 shows how the exponential action of the defect Lie algebra can be used to parametrize
all choice of higher structure maps for a given resolution. Hence we may reformulate the previous
result in the following way.

Lemma 6.3. The ideal Î ⊂ A is the largest ideal in ker(wsscπ) that is closed under the actions of L and
gl(Fi) for all i.

The ring R̂gen is a domain for all formats, and if Tp,q,r is a Dynkin diagram, R̂gen is a finite-type
C-algebra. Then this can be interpreted as saying that Spec R̂gen is the orbit closure of the C-point
corresponding to wsscπ (in the affine space SpecA) under the actions of expL and GL(Fi).
The main technical goal of this section is to unify the actions of ∏gl(Fi) and L, so that we can

instead consider the action of a single Lie algebra ĝ. The Lie algebra sl(F2) × sl(F0) × g does not
quite suffice, since although the algebras sl(Fi) are present here, nonzero scalars in gl(Fi) are not.
We define an action of the abelian Lie algebra t = C3 on A1 as follows. Note that the action of a

Lie algebra element on A1 uniquely extends to a derivation on the entirety of A via the Leibniz rule,
so we will restrict our attention to A1. An element (λ1, λ2, λ3) ∈ t acts as multiplication by λi on
W(di), r2λ2 − r3λ3 onW(a2), and r1λ1 − r2λ2 + r3λ3 onW(a1).
Recall from §2.3 that the middle z1-graded component ker(ad hz1) ⊂ g has the form

sl(F3) × sl(F1) ×Chz1
unless Tp,q,r is one of the affine Dynkin diagrams Ẽn. (If Tp,q,r = Ẽn, then there is an extra copy of C
in this middle component, but it will not affect the following setup.) Let

ĝ = sl(F2) × sl(F0) × g × t.



PARAMETRIZING HIGHER STRUCTURE MAPS FOR RESOLUTIONS OF LENGTH THREE 17

We will view gl(Fi) = sl(Fi) ×C as subalgebras of ĝ via inclusions ιi , which we now define. Let τi
denote the smallest eigenvalue of hz1 acting on W(di), and τ = (τ1, τ2, τ3) ∈ t. The map ιi sends
sl(Fi) to itself, and 1 ∈ C to an element of Chz1 × t as follows:

ι0(1) = (−1, 0, 0)
ι1(1) = (r2 − 1)hz1 + (1,−1, 0) − (r2 − 1)τ
ι2(1) = f2hz1 + (0, 1,−1) − f2τ
ι3(1) = −(1 + f3)hz1 + (0, 0, 1) + (1 + f3)τ.

Theorem 6.4. The Lie algebra ĝ acts on A1, extending the actions of gl(Fi) ⊂ ĝ. If Tp,q,r is Dynkin, the
subalgebras gl(Fi) and g generate the entirety of ĝ.

We conjecture that the statement should hold even without the Dynkin hypothesis.

Proof. We already have sl(F2)×sl(F0)×g acting on A1, and this commutes with the action of t since
elements of t act via scalars on each of the five representations in A1. So their product ĝ does act on
A1.
This evidently extends the actions of sl(Fi), so to establish the first claim it is sufficient to take

1 ∈ C ⊂ gl(Fi) and verify that 1 and ιi(1) act the same way on A1. This can be checked on each
z1-graded component of each representation.
As an example, we check it for 1 ∈ gl(F1) on W(d2). Since the bottom graded component of

W(d2) is F2 ⊗ F∗1 and the part of g in degree 1 is dual to

L1 =
r1+1
⋀ F∗1 ⊗ F3 ⊗

f1
⋀ F1 ⊗

f2
⋀ F∗2 ⊗

f3
⋀ F3,

we see that 1 ∈ gl(F1) acts by −1 + ( f1 − r1 − 1)k = −1 + (r2 − 1)k on the k-th graded component of
W(d2), where we index so that k = 0 refers to the bottom component. The element hz1 acts by τ2+k
on the k-th graded component, thus the action of i1(1) ∈ ĝ is

(r2 − 1)(τ2 + k) + (−1) − (r2 − 1)τ2 = −1 + (r2 − 1)k
which agrees. The verification for any other gl(Fi) onW(d j) is similar, so we omit it.

The verification for W(a2) and W(a1) is almost the same, except one needs to know how the
eigenvalues of hz1 on those representations relate to τ1, τ2, τ3. This is given in Lemma 6.5, which one
should compare to the action of t onW(a2) andW(a1) defined before.

For the final statement of the theorem, it suffices to check that the vectors
(−1, 0, 0), (1,−1, 0) − (r2 − 1)τ, (0, 1,−1) − f2τ, (0, 0, 1) + (1 + f3)τ

span t. This has been explicitly verified for each Dynkin format, but we lack a systematic way of
proving it in general. □

Lemma 6.5. The lowest eigenvalue of hz1 acting on W(a2) is r1τ1, which is equal to r2τ2 − r3τ3. In
particular 0 = r1τ1 − r2τ2 + r3τ3 is the lowest (and only) eigenvalue of hz1 acting onW(a1).
Proof. The lowest eigenvalue of hz1 on V−(−ωxp−1) is τ1 by definition. The corresponding eigenspace
(the bottom z1-graded component) has dimension f1 ≥ r1, so the lowest eigenvalue for⋀r1 V−(−ωxp−1)
is r1τ1. The lowest weight appearing in ⋀r1 V−(−ωxp−1) is

−ωxp−1 + (ωxp−1 − ωxp−2) +⋯ + (ωx2 − ωx1) = −ωx1

recalling that p = r1 + 1. This shows that the lowest eigenvalue of hz1 on V−(−ωx1), and thus on
W(a2), is r1τ1.
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Similarly one can show that the lowest eigenvalue of hz1 on V−(−ωz1) is r3τ3. So the lowest eigen-
value on V−(−ωx1) ⊗ V−(−ωz1) is r1τ1 + r3τ3. The lowest weight appearing in this tensor product is
−ωx1 − ωz1 , but this is also the lowest weight appearing in ⋀r2 V−(−ωyq−1):

−ωyq−1 + (ωyq−1 − ωyq−2) +⋯ + (ωy1 − ωu) + (ωu − ωx1 − ωz1) = −ωx1 − ωz1

recalling that q = r2 − 1. So the lowest eigenvalue of hz1 on V−(−ωx1) ⊗ V−(−ωz1) is the same as on
⋀r2 V−(−ωyq−1), proving r1τ1 + r3τ3 = r2τ2. The final statement in the lemma is just the observation
thatW(a1) is a trivial representation of g. □

Example 6.6. Revisiting T2,3,3 for the format (1, 5, 6, 2) as in Example 2.1,
● V−(−ωx1) is the adjoint and the action of hz1 has eigenvalues −2,−1, 0, 1, 2,
● V−(−ωy2) = V(ωz2) has eigenvalues −4/3,−1/3, 2/3, 5/3, and
● V−(−ωz2) has eigenvalues −5/3,−2/3, 1/3, 4/3.

We indeed have the identity
r1τ1 − r2τ2 + r3τ3 = (1)(−2) − (4)(−4/3) + (2)(−5/3) = 0.

Using Theorem 6.4 we can revisit Lemma 6.3 and give some alternative characterizations of the
ideal of relations Î = ker π.
Theorem 6.7. If Tp,q,r is Dynkin, the following are equivalent characterizations of the ideal Î ⊂ A of
defining relations for R̂gen.

(1) Î is the largest ideal in ker(wsscπ) that is closed under the actions of L and gl(Fi) for i =
0, 1, 2, 3.

(2) Î is the largest ideal in ker(wsscπ) that is closed under the actions of g and gl(Fi) for i = 0, 1, 2, 3.
(3) Î is the largest ideal in ker(wsscπ) that is closed under the action of ĝ = sl(F0)× sl(F2)× g× t.
(4) Î is the largest ideal in ker(wsscπ) that is closed under the action of g × t.

Proof. Characterization (1) is Lemma 6.3. Any ideal closed under g is certainly closed under⊕i Li ⊂
g. As we are assuming Tp,q,r is Dynkin, we have L = ∏i Li = ⊕i Li , but even without this assump-
tion, closure under⊕i Li and∏i Li are equivalent since every element of A is killed byLi for i ≫ 0.
As π is g-equivariant, the ideal Î is closed under g, and thus (2) holds. The equivalence of (2) and
(3) follows fromTheorem 6.4.

To show that (3) and (4) are equivalent, it will be more convenient to pass to a group action
instead. Let pssc ∈ SpecA be the point corresponding to wsscπ. Let G be the group associated to the
Lie algebra g, so G ×C3 corresponds to g × t.
There is a group homomorphism η∶ SL(F2)×SL(F0)→ G induced by the inclusion of the diagram

T −{x1} inside of T . In general, if g ∈ SL(F2)×SL(F0), the actions of g and η(g) on SpecA are very
different, since they act on different tensor factors in A1. However, the actions of SL(F2) × SL(F0)
andG×C3 commute, and for the point pssc in particular, we have g ⋅pssc = η(g) ⋅pssc from the explicit
description in Theorem 4.5. Hence if g′ ∈ G ×C3, the action of (g , g′) ∈ SL(F2) × SL(F0) ×G ×C3

on pssc is the same as the action of g′η(g) ∈ G ×C3. It follows that the following two orbits coincide:
(SL(F2) × SL(F0) ×G ×C3)pssc = (G ×C3)pssc.

Taking the ideal of functions which vanish on these orbits, we get the equivalence of (3) and (4). □

Either of characterizations (3) or (4) will suffice for the applications in the remainder of this sec-
tion. Note that the theorem also holds if one instead takes A to be the polynomial ring generated by
some subrepresentation of A1. By doing so, we may investigate relations involving only a subset of
the five representations.
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6.1. R̂gen and Schubert varieties. One very important example is obtained by taking the represen-
tationW(a2) alone. Let R(a2) denote the subring of R̂gen generated by this representation.

Theorem 6.8. Assume that Tp,q,r is Dynkin. Let G be the group associated to the Lie algebra g. The
subring R(a2) ⊂ R̂gen is the homogeneous coordinate ring of G/Px1 in the Plücker embedding G/Px1 ↪
P(V(ωx1)), where Px1 ⊂ G is the maximal parabolic subgroup for x1 ∈ Tp,q,r.

Let v ∈ V(ωx1) be a highest weight vector, and let B ⊂ G be the subgroup corresponding to the Borel
b−. Write Xw for the codimension three Schubert variety Bw ⋅ [v] ⊂ P(V(ωx1)), where w = sz1 susx1 .
Then the entries of a2 cut out Xw ⊂ G/Px1 set-theoretically.
Proof. Let A = SymW(a2). As a representation of g, W(a2) = V−(−ωx1) = V(ωx1)∗. So we may
view SpecA as the affine space V(ωx1). Let π∶A→ R(a1) ⊂ R̂gen be the evident map. To understand
the point of SpecA = V(ωx1) described by wsscπ, we revisit Theorem 4.5. Although the restriction
ofwssc toW(a2)was not explicitly written there, it is easily inferred: W(a2)⊗W(a1) is the extremal
subrepresentation inside⋀ f0 F∗0 ⊗⋀ f0 V−(−ωxp−1) ⊂ S f0W(d1), and sinceW(a1) is just the scalar a1,
we deduce that the restriction of wssc to W(a2) is nonzero only on the lowest weight space of the
representation.

Geometrically, this means ker(wsscπ) defines a highest weight vector v ∈ V(ωx1). Using either (3)
or (4) ofTheorem 6.7 (as the action of SL(F2)×SL(F0) is trivial here), we conclude that SpecR(a1) ⊂
V(ωx1) is the orbit closure of v under the action ofG×C3 where (λ1, λ2, λ3) ∈ C3 acts by exp(−r1λ1+
r2λ2 − r3λ3). Of course, it is equivalent to consider the orbit closure under G ×C× whereC× acts by
scaling.

Thus SpecR(a1) is the affine cone over G ⋅ [v] ⊂ P(V(ωx1)). The stabilizer of the highest weight
line [v] ∈ P(V(ωx1)) is the parabolic Px1 ⊂ G, so the first part of the theorem follows.

Let φ ∈W(a2) be a lowest weight vector, i.e. the Plücker coordinate dual to [v]. LetW be theWeyl
group ofG,WPx1 the subgroup generated by all reflections other than sx1 , andW

Px1 the set ofminimal
length representatives ofW/WPx1 . The extremal Plücker coordinates which set-theoretically cut out
Xw for w = sz1 susx1 are given by σ ⋅ φ for σ ∈ WPx1 such that σ /≥ w in the partial Bruhat order.
Such representatives are exactly those which do not involve the reflection sz1 . There are ( f1r2) of these,
corresponding to the extremal weights of ⋀r2 F∗1 , the bottom graded component ofW(a2).

By definition, Xw is the B-orbit closure of w ⋅ [v], where B ⊂ G corresponds to the Borel subal-
gebra b−. The linear span of Xw is the representation of b− generated by w ⋅ [v]. It is easy to check
that the vector w ⋅ v ∈ V(ωx1) is killed by all ei ∈ g other than ez1 , thus we may replace b− by the
(negative) maximal parabolic subalgebra pz1 . In particular, the linear span of (the cone over) Xw

is a representation of g(z1) = sl(F3) × sl(F1), and it does not meet the top z1-graded component of
V(ωx1). So all elements of ⋀r2 F∗1 ⊂W(a2), i.e. entries of a2, must vanish on Xw . □

Remark 6.9. It is well-known from the theory of Demazure modules that Schubert varieties are cut
out ideal-theoretically by Plücker coordinates, not just set-theoretically. But in order to conclude
that the entries of a2 cut out Xw ideal-theoretically, it is necessary to know that the second z1-graded
component of W(a2) is irreducible, as this is equivalent to the linear span of Xw containing all
components other than the top one. The author has not verified this for all Dynkin formats at the
time of writing, although it is true for formats where f0 = 1.
This theorem is another step in understanding the deep connection between Weyman’s generic

free resolutions and Schubert varieties. Previously, in [15], these Schubert varieties were studied
for formats (1, f1, f2, f3) of type En. The free resolutions of their coordinate rings were inferred
using linkage. In [13] these examples were revisited and expanded upon, and it was shown how the
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differentials in the free resolutions given in [15] could be explicitly described using representations of
g. The interest in these examples stems from a conjecture [18, 4.9] that they give generic resolutions
of perfect ideals, c.f. the discussion at the end of §5.

Conjecture 1.2, a refinement of the preceding, will be stated and proven in a forthcoming paper.
We will show that if F resolves R/I for a perfect ideal I, then any map R̂gen → R specializing the
generic resolution to F results in a map whose restriction toW(a2) is nonzeromodulo themaximal
ideal m ⊂ R. From the perspective of Theorem 6.8, if we write k = R/m for the residue field, we get
a map Spec k → SpecR(a1) which lands in the complement of the cone vertex. The structure of I is
related to where this k-valued point resides in the Schubert cell stratification of G/Px1 .

6.2. R̂gen for linked formats. Suppose a complex F of format (1, f1, f2, f3) resolves R/I for a perfect
ideal I in a local GorensteinC-algebra R. If s1, s2, s3 ∈ I is a regular sequence among aminimal set of
generators for I, then R/((s1, s2, s3) ∶ I) can be resolved by a complex of format (1, f3 + 3, f2, f1 − 3)
[14, Prop. 2.6]. For this reason we say these two formats are linked. More generally, given a format
f = ( f0, f1, f2, f3), we say the linked3 format is f ′ = ( f0, f3 + f0 + 2, f2, f1 − f0 − 2).
We will use Theorem 4.5 andTheorem 6.7 to compare the generic rings for the two formats. We

will write R̂gen for the generic ring associated to f and R̂′gen for the one associated to f ′. In what
follows, if (−) denotes some construction for f , (−)′ denotes the same construction for f ′.

Theorem 6.10. Fix a Dynkin format f = ( f0, f1, f2, f3) and its linked format f ′. Let R(d1,2,3) denote
the subring of R̂gen generated by⊕i W(di), and similarly for R(d1,2,3)′ ⊂ R̂′gen. Then the rings R(d1,2,3)
and R(d1,2,3)′ are isomorphic.

Proof. For linked formats, the respective graphs Tp,q,r are effectively the same, except the y and z
arms are interchanged so y′k = zk with the preceding notation. Indeed, if we let p = f0+1, q = f1− f0−1,
and r = f3 + 1, then q = ( f1 − f0 − 2) + 1 = f ′3 + 1 and r = ( f3 + f0 + 2) − f0 − 1 = f ′1 − f ′0 − 1, so g = g′
and there is no ambiguity when we write representations V−(−λ). Inside of R̂gen we have the critical
representations

W(d3) = F∗2 ⊗ V−(−ωzr−1)
W(d2) = F2 ⊗ V−(−ωyq−1)
W(d1) = F∗0 ⊗ V−(−ωxp−1).

Inside of R̂′gen we have

W(d3)′ = F ′∗2 ⊗ V−(−ωz′q−1) = F
′∗
2 ⊗ V−(−ωyq−1)

W(d2)′ = F ′2 ⊗ V−(−ωy′r−1) = F
′
2 ⊗ V−(−ωzr−1)

W(d1)′ = F ′∗0 ⊗ V−(−ωx′p−1) = F
′∗
0 ⊗ V−(−ωxp−1).

Let A be the polynomial ring on ⊕i W(di), and R(d1,2,3) ⊂ R̂gen the subring generated by these
representations. Let π∶A→ R(d1,2,3) ⊂ R̂gen be the evident map. Define A′, R(d1,2,3)′, and π′ analo-
gously.

We see that if we identify F ′2 with F∗2 and F ′0 with F0, then we can identify W(d3)′ with W(d2),
W(d2)′ with W(d3), and W(d1)′ with W(d1). Moreover, the maps wsscπ and w′sscπ′ from Theo-
rem 4.5 coincide with this identification. This is the essence of the comment after Theorem 4.5:

3If f0 > 1 then one should consider Buchsbaum-Rim linkage in place of ordinary linkage.
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although z1 ≠ y1 = z′1 on Tp,q,r, the description of wsscπ does not involve that vertex. Rather, it
revolves around the grading induced by x1 = x′1 , which is “shared” between the two formats.

By combining this with either (3) or (4) of Theorem 6.7, we conclude that the defining ideals of
R(d1,2,3) and R(d1,2,3)′ are the same in A = A′, since the Lie algebra actions coincide as well. □

In a forthcoming paper, we intend to useTheorem 6.10 to prove Conjecture 1.1: if (1, f1, f2, f3) is a
Dynkin format, then the ideal I—with hypotheses as laid out at the beginning of this subsection—is
in the linkage class of a complete intersection (“licci”).

Themain idea of the proof is that the specialization R̂gen → R restricts to a map R(d1,2,3)→ R that
can be interpreted in twoways owing to the identification R(d1,2,3) ≅ R(d1,2,3)′ fromTheorem6.10. A
careful examination shows that under mild hypotheses, this yields a pair of resolutions F,F′ which
resolve linked ideals I, I′. Then the action of G on R(d1,2,3) is used to repeatedly adjust this pair of
ideals, keeping one fixed at each step. If the format of F is Dynkin, then this process terminates with
I or I′ generated by a regular sequence.
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