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Background

Throughout, I will denote an ideal in a regular local C-algebra
(S ,m, k).

The module S/I has a finite free resolution, i.e. an acyclic complex

F : 0 → Fc
dc−→ · · · d2−→ F1

d1−→ S

where Fi = S fi is in homological degree i , F0 = S , and
H0(F) = S/I . We call (f0, f1, . . . , fc) the format of F.
If di ⊗ k = 0 for all i , then F is minimal, and bi := fi are the
(ordinary) Betti numbers of S/I . The projective dimension
pdimS/I is then equal to c.
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Background

The ideal I ⊂ S is called perfect if

pdimS/I = grade I := min{i : Exti (S/I ,S) ̸= 0}.

Since S is regular, this is equivalent to S/I being Cohen-Macaulay.

Minimal free resolution of S/I :

F : 0 → Fc
dc−→ Fc−1

dc−1−−−→ · · · d2−→ F1
d1−→ S

Dual:

F∗ : 0 → S
d∗
1−→ F ∗

1

d∗
2−→ · · ·

d∗
c−1−−−→ F ∗

c−1
d∗
c−→ F ∗

c

I is perfect ⇐⇒ c = min{i : Exti (S/I ,S) ̸= 0}
⇐⇒ F∗ is acyclic.

In this case, F∗ resolves the canonical module Extc(S/I ,S). The
minimal number of generators of this module is bc , which is called
the (Cohen-Macaulay) type of S/I .
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Perfect ideals with c = 2

Theorem (Hilbert-Burch)

Every free resolution of the form

0 → F2 → F1 → S

is uniquely a specialization of

0 → T n−1 d2−→ T n d1−→ T

for some n, where T = C[xij , y ], d2 is a generic matrix in the xij ,
and d1 = y(

∧n−1 d∗
2 ).

Corollary

Every grade 2 perfect ideal is generated by the (n − 1)× (n − 1)
minors of a (n − 1)× n matrix.
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Perfect ideals with c = 3

... and type 1

Henceforth we restrict our attention to c = 3.

The ring R = S/I is
Gorenstein when I ⊂ S is perfect and bc = 1. We refer to I itself
as a Gorenstein ideal.

In this case, the minimal free resolution F of S/I looks like

F : 0 → S → Sn → Sn → S .

Theorem (Watanabe)

n is odd.
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A story about a well-known case

Theorem (Watanabe)

n is odd.

Proof.
Starting from I , produce another grade 3 Gorenstein ideal with
n − 2 minimal generators. Repeat this until it terminates at a
complete intersection, which is generated by 3 elements. So the
original number n must be odd.

Watanabe’s procedure is a special case of what is now known as
linkage. (Details omitted—not the focus of this talk.)

I = I0 ∼ I1 ∼ I2 ∼ I3 ∼ · · · ∼ K = complete intersection

Recurring theme in various later works: translate properties from
K , which is well-understood, back to the original ideal I .
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A story about a well-known case

Theorem (Buchsbaum-Eisenbud)

Fix an odd n. Every free resolution of the form

0 → S → Sn → Sn → S

with acyclic dual is isomorphic to a specialization of

0 → T → T n → T n → T

where T = C[xij ], d2 is a generic skew matrix in the xij , and d1, d3
have entries given by the (n − 1)× (n − 1) pfaffians of d2.

Note that this is not quite analogous to Hilbert-Burch:

▶ It only concerns resolutions with acyclic dual

▶ The specialization is only up to isomorphism, and not unique
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Universal free resolutions

Hilbert-Burch gives the universal example of a free resolution with
format (1, n, n − 1). What’s the universal example for (1, n, n, 1)?

Theorem (Bruns)

There isn’t one. But if we drop the requirement that the
specialization be unique, so that the example is “generic” instead
of “universal,” then it always1 exists.

1

for arbitrary formats of any length, not just (1, n, n, 1).
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Weyman’s generic ring

For each format (f0, f1, f2, f3) of length 3, Weyman constructed a
generic ring R̂gen and a generic resolution

Fgen : 0 → R̂ f3
gen → R̂ f2

gen → R̂ f1
gen → R̂ f0

gen

specializing to any resolution F of the same format, carefully
keeping track of the non-uniqueness of R̂gen → S .

Continuing our example from before, let (f0, f1, f2, f3) = (1, n, n, 1).
The resolution F does not uniquely determine a map R̂gen → S
specializing Fgen to F; some additional data is required.
For this particular format, the additional data is a choice of
multiplicative structure on F, making it into a CDGA:

0 F3 F2 F1 S

∧2 F1

d3 d2 d1

d1⊗1−1⊗d1

Note that the non-uniqueness of this choice is F3 ⊗
∧2 F ∗

1 .
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The group action

The (additive) group F3 ⊗
∧2 F ∗

1 acts on{
free resolutions F of format (1, n, n, 1)

together with choice of multiplicative structure

}
and thus on R̂gen.

0 F3 F2 F1 S

∧2 F1

d3 d2 d1

d1⊗1−1⊗d1g

The action of g ∈ F3 ⊗
∧2 F ∗

1 fixes F and adds d3g to the choice
of multiplication

∧2 F1 → F2.



The group action

The semidirect product (F3 ⊗
∧2 F ∗

1 )⋊
∏

GL(Fi ) acts on{
free resolutions F of format (1, n, n, 1)

together with choice of multiplicative structure

}
and thus on R̂gen.
This group turns out to be closely related to a parabolic subgroup
of an even larger group.



A Lie algebra acting on R̂gen

One of the key results from Weyman’s 2018 paper, presented here
for the case (1, n, n, 1).

F ∗
3 ⊗

∧2 F1

sl(F0)× sl(F2) sl(F1)× sl(F3)× C

F3 ⊗
∧2 F ∗

1

×

▶ Right part: the Lie algebra Dn = so2n, displayed with grading
induced by vertex n.

▶ Left part: type An−1 subalgebra of Dn = so2n corresponding
to Dn − {(n − 1)}.
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A new perspective on classical results

So free resolutions of format (1, n, n, 1) have “something” to do
with the the Dynkin diagram Dn, especially the two nodes n − 1
and n.

Recall:

Theorem (Buchsbaum-Eisenbud)

If I is a grade 3 Gorenstein ideal, then S/I has a minimal free
resolution of the form

0 → S → Sn → Sn → S

where d2 is a skew matrix and d1, d3 have entries given by the
(n − 1)× (n − 1) pfaffians of d2.

An arbitrary minimal free resolution of S/I certainly won’t have
this form. The skew matrix only appears after F2 is identified with
F ∗
1 using a choice of multiplication F1 ⊗ F2 → F3.
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A new perspective on classical results

An n × (2n) block matrix:

F ∗
1 F ∗

3 ⊗ F1[ ]
F ∗
2

original differential
d∗
2

multiplication

“identify F2 ∼= F ∗
1 ” = do row operations to make second block the

identity:
F ∗
1 F ∗

3 ⊗ F1[ ]
F ∗
2

new differential
d∗
2

In

Buchsbaum-Eisenbud: the left block is now a skew matrix. In
other words, this determines a S-point of the orthogonal
Grassmannian OG (n, 2n) of isotropic n-planes in F1 ⊕ F3 ⊗ F ∗

1 .
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A new perspective on classical results

F ∗
1 F ∗

3 ⊗ F1[ ]
F ∗
2

skew differential
d∗
2

In

The orthogonal Grassmannian OG (n, 2n) is the homogeneous
space Dn/Pn−1.

Moreover, the submaximal pfaffians of d2
correspond to the Plücker coordinates cutting out the codimension
3 Schubert variety X snsn−2sn−1 complementary to the open Pn-orbit
in Dn/Pn−1.
This Schubert variety itself decomposes into a number of
Pn-orbits. The local ring of X snsn−2sn−1 at some point p depends
on the orbit containing p. It can have Betti numbers...

(1, 3, 3, 1)
largest orbit

(1, 5, 5, 1) · · · (1, n − 2, n − 2, 1) (1, n, n, 1)
smallest orbit
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on the orbit containing p. It can have Betti numbers...

(1, 3, 3, 1)
largest orbit

(1, 5, 5, 1) · · · (1, n − 2, n − 2, 1) (1, n, n, 1)
smallest orbit
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Incidence of non-maximal Pn and Pn−3 orbits in Dn/Pn−1

I =I6 ∈ (1, 3, 3, 1) (1, 3, 3, 1)∋ I3

I =I4 ∈ (1, 5, 5, 1) (1, 4, 5, 2) ∋ I5

(1, 4, 6, 3)∋ I3

I =I2 ∈ (1, 7, 7, 1) (1, 4, 7, 4) ∋ I3

(1, 4, 8, 5)∋ I3

I = I0 ∈ (1, 9, 9, 1) (1, 4, 9, 6) ∋ I1



From a new perspective on classical results...

format (1, n, n, 1) Dn ∋ n − 1, n

structure theory of grade 3 local rings of
Gorenstein ideals X snsn−2sn−1 ⊂ Dn/Pn−1

linkage geometric linkage of
X snsn−2sn−1 and X sn−3sn−2sn−1

structure theory of grade 3 local rings of
a.c.i. ideals X sn−3sn−2sn−1 ⊂ Dn/Pn−1

format (1, 4, n, n − 3) Dn ∋ n − 1, n − 3

(n − 1) (n − 2) (n − 3) · · · 2 1

n



...to new cases

format (1, 7, 8, 2) E8 ∋ 2, 3

structure theory of perfect local rings of
ideals up to (1, 7, 8, 2) X s3s4s2 ⊂ E8/P2

linkage geometric linkage of
X s3s4s2 and X s5s4s2

structure theory of perfect local rings of
ideals up to (1, 5, 8, 4) X s5s4s2 ⊂ E8/P2

format (1, 5, 8, 4) E8 ∋ 2, 5

2 4 5 6 7 8

3

1



...to new cases

Table: Number of families of perfect ideals I such that S/I has Betti
numbers (1, 3 + d , 2 + d + t, t)

t = 1 t = 2 t = 3 t = 4 t = 5 · · ·
d = 0 1 0 0 0 0 · · ·
d = 1 0 1 1 1 1 · · ·
d = 2 1 2 11 90 –
d = 3 0 7 – – –
d = 4 1 49 – – –
d = 5 0 – – – –

...
...

... coming from an ADE correspondence.
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...to new cases

Table: Number of families of perfect ideals I such that S/I has Betti
numbers (1, 3 + d , 2 + d + t, t)

t = 1 t = 2 t = 3 t = 4 t = 5 · · ·
d = 0 1 0 0 0 0 · · ·
d = 1 0 1 1 1 1 · · ·
d = 2 1 2 11 90 –
d = 3 0 7 – – –
d = 4 1 49 – – –
d = 5 0 – – – –

...
...

... coming from an ADE correspondence.


