Weyman's generic ring for free resolutions of length three

L. Guerrieri ${ }^{1} \quad$ X. $\mathrm{Ni}^{2} \quad$ J. Weyman ${ }^{3}$

${ }^{1}$ Jagiellonian University

${ }^{2}$ UC Berkeley
${ }^{3}$ Jagiellonian University
Joint Mathematics Meetings, January 2024

Background

Throughout, I will denote an ideal in a regular local \mathbb{C}-algebra (S, \mathfrak{m}, k).

Background

Throughout, I will denote an ideal in a regular local \mathbb{C}-algebra (S, \mathfrak{m}, k).
The module S / I has a finite free resolution, i.e. an acyclic complex

$$
\mathbb{F}: 0 \rightarrow F_{c} \xrightarrow{d_{c}} \cdots \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} S
$$

where $F_{i}=S^{f_{i}}$ is in homological degree $i, F_{0}=S$, and $H_{0}(\mathbb{F})=S / I$. We call $\left(f_{0}, f_{1}, \ldots, f_{c}\right)$ the format of \mathbb{F}.

Background

Throughout, I will denote an ideal in a regular local \mathbb{C}-algebra (S, \mathfrak{m}, k).
The module S / I has a finite free resolution, i.e. an acyclic complex

$$
\mathbb{F}: 0 \rightarrow F_{c} \xrightarrow{d_{c}} \cdots \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} S
$$

where $F_{i}=S^{f_{i}}$ is in homological degree $i, F_{0}=S$, and $H_{0}(\mathbb{F})=S / I$. We call $\left(f_{0}, f_{1}, \ldots, f_{c}\right)$ the format of \mathbb{F}. If $d_{i} \otimes k=0$ for all i, then \mathbb{F} is minimal, and $b_{i}:=f_{i}$ are the (ordinary) Betti numbers of S / I. The projective dimension pdim S / I is then equal to c.

Background

The ideal $I \subset S$ is called perfect if

$$
\operatorname{pdim} S / I=\operatorname{grade} I:=\min \left\{i: \operatorname{Ext}^{i}(S / I, S) \neq 0\right\}
$$

Since S is regular, this is equivalent to S / I being Cohen-Macaulay.

Background

The ideal $I \subset S$ is called perfect if

$$
\operatorname{pdim} S / I=\operatorname{grade} I:=\min \left\{i: \operatorname{Ext}^{i}(S / I, S) \neq 0\right\}
$$

Since S is regular, this is equivalent to S / I being Cohen-Macaulay. Minimal free resolution of S / I :

$$
\mathbb{F}: 0 \rightarrow F_{c} \xrightarrow{d_{c}} F_{c-1} \xrightarrow{d_{c-1}} \cdots \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} S
$$

Dual:

$$
\mathbb{F}^{*}: 0 \rightarrow S \xrightarrow{d_{1}^{*}} F_{1}^{*} \xrightarrow{d_{2}^{*}} \cdots \xrightarrow{d_{c-1}^{*}} F_{c-1}^{*} \xrightarrow{d_{c}^{*}} F_{c}^{*}
$$

Background

The ideal $I \subset S$ is called perfect if

$$
\operatorname{pdim} S / I=\operatorname{grade} I:=\min \left\{i: \operatorname{Ext}^{i}(S / I, S) \neq 0\right\}
$$

Since S is regular, this is equivalent to S / I being Cohen-Macaulay. Minimal free resolution of S / I :

$$
\mathbb{F}: 0 \rightarrow F_{c} \xrightarrow{d_{c}} F_{c-1} \xrightarrow{d_{c-1}} \cdots \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} S
$$

Dual:

$$
\begin{aligned}
& \mathbb{F}^{*}: 0 \rightarrow S \xrightarrow{d_{1}^{*}} F_{1}^{*} \xrightarrow{d_{2}^{*}} \cdots \xrightarrow{d_{c-1}^{*}} F_{c-1}^{*} \xrightarrow{d_{c}^{*}} F_{c}^{*} \\
& I \text { is perfect } \Longleftrightarrow c=\min \left\{i: \operatorname{Ext}^{i}(S / I, S) \neq 0\right\}
\end{aligned}
$$

Background

The ideal $I \subset S$ is called perfect if

$$
\operatorname{pdim} S / I=\operatorname{grade} I:=\min \left\{i: \operatorname{Ext}^{i}(S / I, S) \neq 0\right\}
$$

Since S is regular, this is equivalent to S / I being Cohen-Macaulay. Minimal free resolution of S / I :

$$
\mathbb{F}: 0 \rightarrow F_{c} \xrightarrow{d_{c}} F_{c-1} \xrightarrow{d_{c-1}} \cdots \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} S
$$

Dual:

$$
\begin{aligned}
\mathbb{F}^{*}: 0 \rightarrow S & \xrightarrow{d_{1}^{*}} F_{1}^{*} \xrightarrow{d_{2}^{*}} \cdots \xrightarrow{d_{c-1}^{*}} F_{c-1}^{*} \xrightarrow{d_{c}^{*}} F_{c}^{*} \\
I \text { is perfect } & \Longleftrightarrow c=\min \left\{i: \operatorname{Ext}^{i}(S / I, S) \neq 0\right\} \\
& \Longleftrightarrow \mathbb{F}^{*} \text { is acyclic. }
\end{aligned}
$$

In this case, \mathbb{F}^{*} resolves the canonical module $\operatorname{Ext}^{c}(S / I, S)$. The minimal number of generators of this module is b_{c}, which is called the (Cohen-Macaulay) type of S / I.

Perfect ideals with $c=2$

Theorem (Hilbert-Burch)
Every free resolution of the form

$$
0 \rightarrow F_{2} \rightarrow F_{1} \rightarrow S
$$

is uniquely a specialization of

$$
0 \rightarrow T^{n-1} \xrightarrow{d_{2}} T^{n} \xrightarrow{d_{1}} T
$$

for some n, where $T=\mathbb{C}\left[x_{i j}, y\right], d_{2}$ is a generic matrix in the $x_{i j}$, and $d_{1}=y\left(\bigwedge^{n-1} d_{2}^{*}\right)$.

Perfect ideals with $c=2$

Theorem (Hilbert-Burch)
Every free resolution of the form

$$
0 \rightarrow F_{2} \rightarrow F_{1} \rightarrow S
$$

is uniquely a specialization of

$$
0 \rightarrow T^{n-1} \xrightarrow{d_{2}} T^{n} \xrightarrow{d_{1}} T
$$

for some n, where $T=\mathbb{C}\left[x_{i j}, y\right], d_{2}$ is a generic matrix in the $x_{i j}$, and $d_{1}=y\left(\bigwedge^{n-1} d_{2}^{*}\right)$.

Corollary
Every grade 2 perfect ideal is generated by the $(n-1) \times(n-1)$ minors of a $(n-1) \times n$ matrix.

Perfect ideals with $c=3$

Henceforth we restrict our attention to $c=3$.

Perfect ideals with $c=3 \ldots$ and type 1

Henceforth we restrict our attention to $c=3$. The ring $R=S / I$ is Gorenstein when $I \subset S$ is perfect and $b_{c}=1$. We refer to I itself as a Gorenstein ideal.

Perfect ideals with $c=3 \ldots$ and type 1

Henceforth we restrict our attention to $c=3$. The ring $R=S / I$ is Gorenstein when $I \subset S$ is perfect and $b_{c}=1$. We refer to I itself as a Gorenstein ideal.
In this case, the minimal free resolution \mathbb{F} of S / I looks like

$$
\mathbb{F}: 0 \rightarrow S \rightarrow S^{n} \rightarrow S^{n} \rightarrow S
$$

Perfect ideals with $c=3 \ldots$ and type 1

Henceforth we restrict our attention to $c=3$. The ring $R=S / I$ is Gorenstein when $I \subset S$ is perfect and $b_{c}=1$. We refer to I itself as a Gorenstein ideal.
In this case, the minimal free resolution \mathbb{F} of S / I looks like

$$
\mathbb{F}: 0 \rightarrow S \rightarrow S^{n} \rightarrow S^{n} \rightarrow S
$$

Theorem (Watanabe)
n is odd.

A story about a well-known case

Theorem (Watanabe)
n is odd.
Proof.
Starting from I, produce another grade 3 Gorenstein ideal with $n-2$ minimal generators. Repeat this until it terminates at a complete intersection, which is generated by 3 elements. So the original number n must be odd.

A story about a well-known case

Theorem (Watanabe)
n is odd.
Proof.
Starting from I, produce another grade 3 Gorenstein ideal with $n-2$ minimal generators. Repeat this until it terminates at a complete intersection, which is generated by 3 elements. So the original number n must be odd.
Watanabe's procedure is a special case of what is now known as linkage. (Details omitted-not the focus of this talk.)

$$
I=I_{0} \sim I_{1} \sim I_{2} \sim I_{3} \sim \cdots \sim K=\text { complete intersection }
$$

Recurring theme in various later works: translate properties from K, which is well-understood, back to the original ideal I.

A story about a well-known case

Theorem (Buchsbaum-Eisenbud)

Fix an odd n. Every free resolution of the form

$$
0 \rightarrow S \rightarrow S^{n} \rightarrow S^{n} \rightarrow S
$$

with acyclic dual is isomorphic to a specialization of

$$
0 \rightarrow T \rightarrow T^{n} \rightarrow T^{n} \rightarrow T
$$

where $T=\mathbb{C}\left[x_{i j}\right], d_{2}$ is a generic skew matrix in the $x_{i j}$, and d_{1}, d_{3} have entries given by the $(n-1) \times(n-1)$ pfaffians of d_{2}.

A story about a well-known case

Theorem (Buchsbaum-Eisenbud)

Fix an odd n. Every free resolution of the form

$$
0 \rightarrow S \rightarrow S^{n} \rightarrow S^{n} \rightarrow S
$$

with acyclic dual is isomorphic to a specialization of

$$
0 \rightarrow T \rightarrow T^{n} \rightarrow T^{n} \rightarrow T
$$

where $T=\mathbb{C}\left[x_{i j}\right], d_{2}$ is a generic skew matrix in the $x_{i j}$, and d_{1}, d_{3} have entries given by the $(n-1) \times(n-1)$ pfaffians of d_{2}.
Note that this is not quite analogous to Hilbert-Burch:

- It only concerns resolutions with acyclic dual
- The specialization is only up to isomorphism, and not unique

Universal free resolutions

Hilbert-Burch gives the universal example of a free resolution with format ($1, n, n-1$). What's the universal example for $(1, n, n, 1)$?

Universal free resolutions

Hilbert-Burch gives the universal example of a free resolution with format ($1, n, n-1$). What's the universal example for $(1, n, n, 1)$?
Theorem (Bruns)
There isn't one.

Universal Generic free resolutions

Hilbert-Burch gives the universal example of a free resolution with format ($1, n, n-1$). What's the universal example for $(1, n, n, 1)$?
Theorem (Bruns)
There isn't one. But if we drop the requirement that the specialization be unique, so that the example is "generic" instead of "universal," then it always ${ }^{1}$ exists.
${ }^{1}$ for arbitrary formats of any length, not just ($1, n, n, 1$).

Weyman's generic ring

For each format $\left(f_{0}, f_{1}, f_{2}, f_{3}\right)$ of length 3 , Weyman constructed a generic ring $\widehat{R}_{\text {gen }}$ and a generic resolution

$$
\mathbb{F}^{\text {gen }}: 0 \rightarrow \widehat{R}_{\text {gen }}^{f_{3}} \rightarrow \widehat{R}_{\text {gen }}^{f_{2}} \rightarrow \widehat{R}_{\text {gen }}^{f_{1}} \rightarrow \widehat{R}_{\text {gen }}^{f_{0}}
$$

specializing to any resolution \mathbb{F} of the same format, carefully keeping track of the non-uniqueness of $\widehat{R}_{\text {gen }} \rightarrow S$.

Weyman's generic ring

For each format ($f_{0}, f_{1}, f_{2}, f_{3}$) of length 3 , Weyman constructed a generic ring $\widehat{R}_{\text {gen }}$ and a generic resolution

$$
\mathbb{F}^{\text {gen }}: 0 \rightarrow \widehat{R}_{\text {gen }}^{f_{3}} \rightarrow \widehat{R}_{\text {gen }}^{f_{2}} \rightarrow \widehat{R}_{\text {gen }}^{f_{1}} \rightarrow \widehat{R}_{\text {gen }}^{f_{0}}
$$

specializing to any resolution \mathbb{F} of the same format, carefully keeping track of the non-uniqueness of $\widehat{R}_{\text {gen }} \rightarrow S$.
Continuing our example from before, let $\left(f_{0}, f_{1}, f_{2}, f_{3}\right)=(1, n, n, 1)$. The resolution \mathbb{F} does not uniquely determine a map $\widehat{R}_{\text {gen }} \rightarrow S$ specializing $\mathbb{F}^{\text {gen }}$ to \mathbb{F}; some additional data is required.

Weyman's generic ring

For each format ($f_{0}, f_{1}, f_{2}, f_{3}$) of length 3 , Weyman constructed a generic ring $\widehat{R}_{\text {gen }}$ and a generic resolution

$$
\mathbb{F}^{\text {gen }}: 0 \rightarrow \widehat{R}_{\text {gen }}^{f_{3}} \rightarrow \widehat{R}_{\text {gen }}^{f_{2}} \rightarrow \widehat{R}_{\text {gen }}^{f_{1}} \rightarrow \widehat{R}_{\text {gen }}^{f_{0}}
$$

specializing to any resolution \mathbb{F} of the same format, carefully keeping track of the non-uniqueness of $\widehat{R}_{\text {gen }} \rightarrow S$.
Continuing our example from before, let $\left(f_{0}, f_{1}, f_{2}, f_{3}\right)=(1, n, n, 1)$. The resolution \mathbb{F} does not uniquely determine a map $\widehat{R}_{\text {gen }} \rightarrow S$ specializing $\mathbb{F}^{\text {gen }}$ to \mathbb{F}; some additional data is required. For this particular format, the additional data is a choice of multiplicative structure on \mathbb{F}, making it into a CDGA:

$$
\begin{aligned}
0 \rightarrow F_{3} \xrightarrow{d_{3}} F_{2} \xrightarrow[K_{-}]{d_{2}} \xrightarrow{d_{1} d_{1} \otimes 1-1 \otimes d_{1}} \xrightarrow{F_{1}} S \\
\Lambda^{2} F_{1}
\end{aligned}
$$

Weyman's generic ring

For each format ($f_{0}, f_{1}, f_{2}, f_{3}$) of length 3 , Weyman constructed a generic ring $\widehat{R}_{\text {gen }}$ and a generic resolution

$$
\mathbb{F}^{\text {gen }}: 0 \rightarrow \widehat{R}_{\text {gen }}^{f_{3}} \rightarrow \widehat{R}_{\text {gen }}^{f_{2}} \rightarrow \widehat{R}_{\text {gen }}^{f_{1}} \rightarrow \widehat{R}_{\text {gen }}^{f_{0}}
$$

specializing to any resolution \mathbb{F} of the same format, carefully keeping track of the non-uniqueness of $\widehat{R}_{\text {gen }} \rightarrow S$.
Continuing our example from before, let $\left(f_{0}, f_{1}, f_{2}, f_{3}\right)=(1, n, n, 1)$. The resolution \mathbb{F} does not uniquely determine a map $\widehat{R}_{\text {gen }} \rightarrow S$ specializing $\mathbb{F}^{\text {gen }}$ to \mathbb{F}; some additional data is required. For this particular format, the additional data is a choice of multiplicative structure on \mathbb{F}, making it into a CDGA:

Note that the non-uniqueness of this choice is $F_{3} \otimes_{-} \Lambda^{2} F_{1}^{*}$.

The group action

The group $\Pi G L\left(F_{i}\right)$ acts on
$\{$ free resolutions \mathbb{F} of format $(1, n, n, 1)\}$

The group action

The group $\Pi G L\left(F_{i}\right)$ acts on

$$
\left\{\begin{array}{c}
\text { free resolutions } \mathbb{F} \text { of format }(1, n, n, 1) \\
\text { together with choice of multiplicative structure }
\end{array}\right\}
$$

and thus on $\widehat{R}_{\text {gen }}$.

The group action

The (additive) group $F_{3} \otimes \bigwedge^{2} F_{1}^{*}$ acts on

$$
\left\{\begin{array}{c}
\text { free resolutions } \mathbb{F} \text { of format }(1, n, n, 1) \\
\text { together with choice of multiplicative structure }
\end{array}\right\}
$$

and thus on $\widehat{R}_{\text {gen }}$.

The action of $g \in F_{3} \otimes \bigwedge^{2} F_{1}^{*}$ fixes \mathbb{F} and adds $d_{3} g$ to the choice of multiplication $\bigwedge^{2} F_{1} \rightarrow F_{2}$.

The group action

The semidirect product $\left(F_{3} \otimes \bigwedge^{2} F_{1}^{*}\right) \rtimes \prod G L\left(F_{i}\right)$ acts on

$$
\left\{\begin{array}{c}
\text { free resolutions } \mathbb{F} \text { of format }(1, n, n, 1) \\
\text { together with choice of multiplicative structure }
\end{array}\right\}
$$

and thus on $\widehat{R}_{\text {gen }}$.
This group turns out to be closely related to a parabolic subgroup of an even larger group.

A Lie algebra acting on $\widehat{R}_{\text {gen }}$

One of the key results from Weyman's 2018 paper, presented here for the case ($1, n, n, 1$).

$$
\begin{array}{r}
F_{3}^{*} \otimes \bigwedge^{2} F_{1} \\
\mathfrak{s l}\left(F_{0}\right) \times \mathfrak{s l}\left(F_{2}\right) \times \mathfrak{s l}\left(F_{1}\right) \times \mathfrak{s l}\left(F_{3}\right) \times \mathbb{C} \\
F_{3} \otimes \bigwedge^{2} F_{1}^{*}
\end{array}
$$

A Lie algebra acting on $\widehat{R}_{\text {gen }}$

One of the key results from Weyman's 2018 paper, presented here for the case ($1, n, n, 1$).

$$
\begin{array}{r}
F_{3}^{*} \otimes \bigwedge^{2} F_{1} \\
\mathfrak{s l l}\left(F_{0}\right) \times \mathfrak{s l l}\left(F_{2}\right) \times \mathfrak{s l}\left(F_{1}\right) \times \mathfrak{s l}\left(F_{3}\right) \times \mathbb{C} \\
F_{3} \otimes \bigwedge^{2} F_{1}^{*}
\end{array}
$$

- Right part: the Lie algebra $D_{n}=\mathfrak{s o}_{2 n}$, displayed with grading induced by vertex n.

$$
(n-1)-(n-2)-(n-3)-\cdots-2-1
$$

A Lie algebra acting on $\widehat{R}_{\text {gen }}$

One of the key results from Weyman's 2018 paper, presented here for the case ($1, n, n, 1$).

$$
\begin{array}{r}
F_{3}^{*} \otimes \bigwedge^{2} F_{1} \\
\mathfrak{s l}\left(F_{0}\right) \times \mathfrak{s l}\left(F_{2}\right) \times \mathfrak{s l}\left(F_{1}\right) \times \mathfrak{s l}\left(F_{3}\right) \times \mathbb{C} \\
F_{3} \otimes \bigwedge^{2} F_{1}^{*}
\end{array}
$$

- Right part: the Lie algebra $D_{n}=\mathfrak{s o}_{2 n}$, displayed with grading induced by vertex n.
- Left part: type A_{n-1} subalgebra of $D_{n}=\mathfrak{5 o}_{2 n}$ corresponding to $D_{n}-\{(n-1)\}$.

$$
(n-1)-(n-2)-(n-3)-\cdots-2-1
$$

A new perspective on classical results

So free resolutions of format $(1, n, n, 1)$ have "something" to do with the the Dynkin diagram D_{n}, especially the two nodes $n-1$ and n.

A new perspective on classical results

So free resolutions of format $(1, n, n, 1)$ have "something" to do with the the Dynkin diagram D_{n}, especially the two nodes $n-1$ and n.
Recall:

Theorem (Buchsbaum-Eisenbud)

If I is a grade 3 Gorenstein ideal, then S / I has a minimal free resolution of the form

$$
0 \rightarrow S \rightarrow S^{n} \rightarrow S^{n} \rightarrow S
$$

where d_{2} is a skew matrix and d_{1}, d_{3} have entries given by the $(n-1) \times(n-1)$ pfaffians of d_{2}.

A new perspective on classical results

So free resolutions of format $(1, n, n, 1)$ have "something" to do with the the Dynkin diagram D_{n}, especially the two nodes $n-1$ and n.
Recall:

Theorem (Buchsbaum-Eisenbud)

If I is a grade 3 Gorenstein ideal, then S / I has a minimal free resolution of the form

$$
0 \rightarrow S \rightarrow S^{n} \rightarrow S^{n} \rightarrow S
$$

where d_{2} is a skew matrix and d_{1}, d_{3} have entries given by the $(n-1) \times(n-1)$ pfaffians of d_{2}.
An arbitrary minimal free resolution of S / I certainly won't have this form. The skew matrix only appears after F_{2} is identified with F_{1}^{*} using a choice of multiplication $F_{1} \otimes F_{2} \rightarrow F_{3}$.

A new perspective on classical results

An $n \times(2 n)$ block matrix:

A new perspective on classical results

An $n \times(2 n)$ block matrix:

$$
F_{2}^{*}\left[\begin{array}{cc}
F_{1}^{*} & F_{3}^{*} \otimes F_{1} \\
\left.\begin{array}{cc}
\text { original differential } \\
d_{2}^{*} & \text { multiplication }
\end{array}\right]
\end{array}\right.
$$

"identify $F_{2} \cong F_{1}^{* "}=$ do row operations to make second block the identity:

$$
\left.\begin{array}{cc}
F_{1}^{*} & F_{3}^{*} \otimes F_{1} \\
F_{2}^{*}
\end{array} \begin{array}{cc}
\text { new differential } \\
d_{2}^{*} & I_{n}
\end{array}\right]
$$

Buchsbaum-Eisenbud: the left block is now a skew matrix.

A new perspective on classical results

An $n \times(2 n)$ block matrix:
$F_{1}^{*} \quad F_{3}^{*} \otimes F_{1}$
$F_{2}^{*}\left[\begin{array}{cc}\text { original differential } \\ d_{2}^{*} & \text { multiplication }\end{array}\right]$
"identify $F_{2} \cong F_{1}^{* "}=$ do row operations to make second block the identity:

$$
F_{2}^{*}\left[\begin{array}{cc}
F_{1}^{*} & F_{3}^{*} \otimes F_{1} \\
{\left[\begin{array}{c}
\text { new differential } \\
d_{2}^{*}
\end{array}\right.} & I_{n}
\end{array}\right]
$$

Buchsbaum-Eisenbud: the left block is now a skew matrix. In other words, this determines a S-point of the orthogonal Grassmannian $O G(n, 2 n)$ of isotropic n-planes in $F_{1} \oplus F_{3} \otimes F_{1}^{*}$.

A new perspective on classical results

The orthogonal Grassmannian $O G(n, 2 n)$ is the homogeneous space D_{n} / P_{n-1}.

A new perspective on classical results

The orthogonal Grassmannian $O G(n, 2 n)$ is the homogeneous space D_{n} / P_{n-1}. Moreover, the submaximal pfaffians of d_{2} correspond to the Plücker coordinates cutting out the codimension 3 Schubert variety $X^{s_{n} s_{n-2} s_{n-1}}$ complementary to the open P_{n}-orbit in D_{n} / P_{n-1}.

A new perspective on classical results

The orthogonal Grassmannian $O G(n, 2 n)$ is the homogeneous space D_{n} / P_{n-1}. Moreover, the submaximal pfaffians of d_{2} correspond to the Plücker coordinates cutting out the codimension 3 Schubert variety $X^{s_{n} s_{n-2} s_{n-1}}$ complementary to the open P_{n}-orbit in D_{n} / P_{n-1}.
This Schubert variety itself decomposes into a number of P_{n}-orbits. The local ring of $X^{s_{n} s_{n-2} s_{n-1}}$ at some point p depends on the orbit containing p.

A new perspective on classical results

The orthogonal Grassmannian $O G(n, 2 n)$ is the homogeneous space D_{n} / P_{n-1}. Moreover, the submaximal pfaffians of d_{2} correspond to the Plücker coordinates cutting out the codimension 3 Schubert variety $X^{s_{n} s_{n-2} s_{n-1}}$ complementary to the open P_{n}-orbit in D_{n} / P_{n-1}.
This Schubert variety itself decomposes into a number of P_{n}-orbits. The local ring of $X^{s_{n} s_{n-2} s_{n-1}}$ at some point p depends on the orbit containing p. It can have Betti numbers...

A new perspective on classical results

$F_{2}^{*}\left[\begin{array}{cc}F_{1}^{*} & F_{3}^{*} \otimes F_{1} \\ d_{2}^{*} & I_{n}\end{array}\right]$

The orthogonal Grassmannian $O G(n, 2 n)$ is the homogeneous space D_{n} / P_{n-1}. Moreover, the submaximal pfaffians of d_{2} correspond to the Plücker coordinates cutting out the codimension 3 Schubert variety $X^{s_{n} s_{n-2} s_{n-1}}$ complementary to the open P_{n}-orbit in D_{n} / P_{n-1}.
This Schubert variety itself decomposes into a number of P_{n}-orbits. The local ring of $X^{s_{n} s_{n-2} s_{n-1}}$ at some point p depends on the orbit containing p. It can have Betti numbers...
$(1,3,3,1)$
largest orbit
(1, n, n, 1)
smallest orbit

A new perspective on classical results

$F_{2}^{*}\left[\begin{array}{cc}F_{1}^{*} & F_{3}^{*} \otimes F_{1} \\ \text { skew differential } & I_{n} \\ d_{2}^{*} & \end{array}\right]$

The orthogonal Grassmannian $O G(n, 2 n)$ is the homogeneous space D_{n} / P_{n-1}. Moreover, the submaximal pfaffians of d_{2} correspond to the Plücker coordinates cutting out the codimension 3 Schubert variety $X^{s_{n} s_{n-2} s_{n-1}}$ complementary to the open P_{n}-orbit in D_{n} / P_{n-1}.
This Schubert variety itself decomposes into a number of P_{n}-orbits. The local ring of $X^{s_{n} S_{n-2} s_{n-1}}$ at some point p depends on the orbit containing p. It can have Betti numbers...
$(1,3,3,1)$
largest orbit
$(1,5,5,1)$
$(1, n-2, n-2,1)$
(1, $n, n, 1$)
smallest orbit

A new perspective on classical results

$$
\text { format }(1, n, n, 1) \quad D_{n}=\mathfrak{s o}_{2 n}, n-1, n
$$

$$
\begin{gathered}
(n-1)-(n-2)-(n-3)-\cdots-2-1 \\
n \\
n
\end{gathered}
$$

A new perspective on classical results

$$
\begin{aligned}
\text { format }(1, n, n, 1) & D_{n}=\mathfrak{s o}_{2 n}, n-1, n \\
& O G(n, 2 n)=D_{n} / P_{n-1}
\end{aligned}
$$

$$
\begin{gathered}
(n-1)-(n-2)-(n-3)-\cdots-2-1 \\
\vdots \\
n
\end{gathered}
$$

A new perspective on classical results

$$
\text { format } \begin{aligned}
(1, n, n, 1) & D_{n}=\mathfrak{s o}_{2 n}, n-1, n \\
& O G(n, 2 n)=D_{n} / P_{n-1}
\end{aligned}
$$

Buchsbaum-Eisenbud for grade 3 Gorenstein ideals
local rings of $X^{s_{n} s_{n-2} s_{n-1}} \subset D_{n} / P_{n-1}$

$$
\begin{gathered}
(n-1)-(n-2)-(n-3)-\cdots-2-1 \\
n \\
n
\end{gathered}
$$

A new perspective on classical results

$$
\text { format } \begin{aligned}
(1, n, n, 1) & D_{n}=\mathfrak{s o}_{2 n}, n-1, n \\
& O G(n, 2 n)=D_{n} / P_{n-1}
\end{aligned}
$$

Buchsbaum-Eisenbud for grade 3 Gorenstein ideals
local rings of $X^{s_{n} s_{n-2} s_{n-1}} \subset D_{n} / P_{n-1}$
format (1, 4, $n, n-3$)
$D_{n}=\mathfrak{5 o}_{2 n}, n-1, n-3$

$$
(n-1)-(n-2)-(n-3)-\cdots-2-1
$$

$$
\begin{aligned}
& 1 \\
& n
\end{aligned}
$$

A new perspective on classical results

$$
\text { format } \begin{aligned}
(1, n, n, 1) & D_{n}=\mathfrak{s o}_{2 n}, n-1, n \\
& O G(n, 2 n)=D_{n} / P_{n-1}
\end{aligned}
$$

Buchsbaum-Eisenbud for grade 3 Gorenstein ideals
local rings of $X^{s_{n} s_{n-2} s_{n-1}} \subset D_{n} / P_{n-1}$

$$
O G(n, 2 n)=D_{n} / P_{n-1}
$$

format (1, 4, $n, n-3$)

$$
(n-1)-(n-2)-(n-3)-\cdots-2-1
$$

$$
\begin{aligned}
& \prime \\
& n
\end{aligned}
$$

A new perspective on classical results

$$
\text { format } \begin{aligned}
(1, n, n, 1) & D_{n}=\mathfrak{s o}_{2 n}, n-1, n \\
& O G(n, 2 n)=D_{n} / P_{n-1}
\end{aligned}
$$

Buchsbaum-Eisenbud for grade 3 Gorenstein ideals

Buchsbaum-Eisenbud for grade 3 a.c.i. ideals
format (1, 4, n, $n-3$)
local rings of $X^{s_{n} s_{n-2} s_{n-1}} \subset D_{n} / P_{n-1}$
local rings of $X^{s_{n-3} s_{n-2} s_{n-1}} \subset D_{n} / P_{n-1}$
$O G(n, 2 n)=D_{n} / P_{n-1}$
$D_{n}=\mathfrak{s o}_{2 n}, n-1, n-3$

$$
(n-1)-(n-2)-(n-3)-\cdots-2-1
$$

A new perspective on classical results

$$
\begin{aligned}
\text { format }(1, n, n, 1) & D_{n}=\mathfrak{s o}_{2 n}, n-1, n \\
& O G(n, 2 n)=D_{n} / P_{n-1}
\end{aligned}
$$

Buchsbaum-Eisenbud for grade 3 Gorenstein ideals

Watanabe (linkage)
local rings of $X^{s_{n} s_{n-2} s_{n-1}} \subset D_{n} / P_{n-1}$
geometric linkage of $X^{s_{n} S_{n-2} s_{n-1}}$ and $X^{s_{n-3} S_{n-2} s_{n-1}}$

Buchsbaum-Eisenbud for grade 3 a.c.i. ideals
format (1, 4, n, n-3)

$$
\begin{gathered}
(n-1)-(n-2)-(n-3)-\cdots-2-1 \\
n \\
n
\end{gathered}
$$

Incidence of non-maximal P_{n} and P_{n-3} orbits in D_{n} / P_{n-1}

From a new perspective on classical results...

format $(1, n, n, 1) \quad D_{n} \ni n-1, n$
structure theory of grade 3 local rings of
Gorenstein ideals $\quad X^{s_{n} s_{n-2} s_{n-1}} \subset D_{n} / P_{n-1}$
linkage geometric linkage of

$$
X^{s_{n} S_{n-2} s_{n-1}} \text { and } X^{s_{n-3} s_{n-2} s_{n-1}}
$$

structure theory of grade 3
a.c.i. ideals
local rings of $X^{s_{n-3} s_{n-2} s_{n-1}} \subset D_{n} / P_{n-1}$
format $(1,4, n, n-3) \quad D_{n} \ni n-1, n-3$

$$
(n-1)-(n-2)-(n-3)-\cdots-2-1
$$

n

...to new cases

format $(1,7,8,2) \quad E_{8} \ni 2,3$
structure theory of perfect local rings of ideals up to $(1,7,8,2) \quad X^{s_{3} 5_{4} S_{2}} \subset E_{8} / P_{2}$
linkage
geometric linkage of $X^{s_{3} S_{4} s_{2}}$ and $X^{s_{5} s_{4} s_{2}}$
structure theory of perfect ideals up to $(1,5,8,4)$ format $(1,5,8,4) \quad E_{8} \ni 2,5$

2-4-5-6-7-8
3
1

Table: Number of families of perfect ideals I such that S / I has Betti numbers $(1,3+d, 2+d+t, t)$

	$t=1$	$t=2$	$t=3$	$t=4$	$t=5$	\cdots
$d=0$	1	0	0	0	0	\cdots
$d=1$	0	1	1	1	1	\cdots
$d=2$	1	2	11	90	-	
$d=3$	0	7	-	-	-	
$d=4$	1	49	-	-	-	
$d=5$	0	-	-	-	-	
\vdots	\vdots					

... coming from an ADE correspondence.

Table: Number of families of perfect ideals I such that S / I has Betti numbers $(1,3+d, 2+d+t, t)$

	$t=1$	$t=2$	$t=3$	$t=4$	$t=5$	\cdots
$d=0$	1	0	0	0	0	\cdots
$d=1$	0	1	1	1	1	\cdots
$d=2$	1	2	11	90	-	
$d=3$	0	7	-	-	-	
$d=4$	1	49	-	-	-	
$d=5$	0	-	-	-	-	
\vdots	\vdots					

... coming from an ADE correspondence.

Table: Number of families of perfect ideals I such that S / I has Betti numbers $(1,3+d, 2+d+t, t)$

	$t=1$	$t=2$	$t=3$	$t=4$	$t=5$	\cdots
$d=0$	1	0	0	0	0	\cdots
$d=1$	0	1	1	1	1	\cdots
$d=2$	1	2	11	90	-	
$d=3$	0	7	-	-	-	
$d=4$	1	49	-	-	-	
$d=5$	0	-	-	-	-	
\vdots	\vdots					

... coming from an ADE correspondence.

