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Abstract. Using the theory of “higher structure maps” from generic rings for free resolutions of
length three, we give a classification of grade 3 perfect ideals with small type and deviation in local
rings of equicharacteristic zero, extending the Buchsbaum-Eisenbud structure theorem on Goren-
stein ideals and realizing it as the type D case of an ADE correspondence. We also deduce restrictions
on Betti tables in the graded setting for such ideals.
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1. Introduction

We say an ideal I in a local Noetherian C-algebra (R,m) is perfect if grade I = pdimR R/I, where
grade I ∶= depth(I, R). In the event that R is a regular local ring, I being perfect is equivalent to R/I
being a Cohen-Macaulay R-module by the Auslander-Buchsbaum formula. It is well-known that
all perfect ideals of grade two are determinantal. More precisely one has the following corollary of
Hilbert-Burch:

Theorem. Let S be the polynomial ring on the variables xi , j (1 ≤ i ≤ n, 1 ≤ j ≤ n − 1), localized at the
ideal of variables. Consider the complex

G∶0→ Sn−1 d2Ð→ Sn d1Ð→ S

where d2 = [xi , j] is the generic matrix in the variables xi , j and (d1)1,k is (−1)k times the k-th (n − 1)×
(n − 1)minor of d2. This complex is acyclic.

1



2 LORENZO GUERRIERI, XIANGLONG NI, JERZYWEYMAN

Letting J denote the image of d1, if I ⊂ R is a perfect ideal of grade two minimally generated by n
elements, then there exists a local homomorphism φ∶ S → R such that φ(J)R = I, or equivalently that
G⊗ R resolves R/I.

For perfect ideals of grade three, theorems of this type are only known in a few special cases. The
Betti numbers (1, b1, b2, b3) of such an ideal are determined by the type r(R/I) ≥ 1 and the deviation
d(I) ≥ 0: the former is the minimal number of generators for the canonical module of R/I, thus
equal to b3, and the latter is by definition b1 − 3. Then one has b2 = b1 + b3 − 1 = r(R/I) + d(I) + 2.

The case r(R/I) = 1 gives Gorenstein ideals, and these are characterized by the well-known struc-
ture theorem of Buchsbaum and Eisenbud: I is generated by the (n− 1)×(n− 1) Pfaffians of an n×n
skew matrix [3] which appears as the differential d2 in a resolution of R/I. From this, an analogous
result for almost complete intersections (i.e. d(I) = 1) can be deduced from linkage. This was also
carried out in [3], and then made more explicit in [1].

The natural question to pose is whether all perfect ideals of grade 3 with a fixed type and deviation
can be realized as specializations of some generic example, as they do in these two cases. The smallest
new case to consider would be when r(R/I) = d(I) = 2, so R/I has Betti numbers (1, 5, 6, 2). One
observation here is that the multiplication

Tor1(R/I, k)⊗ Tor1(R/I, k)→ Tor2(R/I, k)

may or may not be zero, where k = R/m. If (R′,m′) is another local ring and φ∶R → R′ is a local ho-
momorphism such that I′ = φ(I)R′ is a perfect ideal of grade three in R′, then φ induces an inclusion
of residue fields k → k′ ∶= R′/m′ through which Tor∗(R′/I′, k′) = Tor∗(R/I, k)⊗ k′. Consequently
the property of this multiplication being (non)zero is preserved under local specialization, meaning
that there cannot be a single generic example for perfect ideals with Betti numbers (1, 5, 6, 2).
As we will see, the next best thing is true: there is a generic example for each of the two cases. If

the multiplication is nonzero, the ideal is directly linked to one with Betti numbers (1, 4, 5, 2) and
the generic example is given in [1]. An ideal J(t) parametrizing a family with zero multiplication on
Tor∗(R′/I′, k′) was studied in [6] and revisited in [11] in a characteristic-free manner. In fact, the
ideal J(t) is the generic example for that case and we will establish this as a corollary of our main
classification result Theorem 4.4, which explains these two families in terms of the representation
theory of E6.
To explain the ADE correspondence, we revisit the Gorenstein case. Let n = d(I) + 3 so that the

Betti numbers are (1, n, n, 1). If F is an arbitrary minimal free resolution of R/I, then of course the
differential d2∶ F2 → F1 need not be a skew matrix. The skewmatrix only appears after one identifies
F2 ≅ F∗1 using a choice of multiplication F1 ⊗ F2 → F3 on the free resolution.
We can rephrase this as follows. The differential d2∶ F2 → F1 and the multiplication F1 ⊗ F2 → F3

can be put side by side as an n × 2n matrix

F∗1 F1

[ ]F∗2 d∗2 w(2)1

wherew(2)1 is themultiplication viewed as an isomorphism F1 ≅ F∗3 ⊗F1 → F2. Thismatrix determines
a map from SpecR to the orthogonal Grassmannian OG(n, 2n) of isotropic n-planes inside of F∗1 ⊕
F1 with the quadratic form Q given by the evident pairing. To see this, there is an affine patch
N ⊂ OG(n, 2n) consisting of those isotropic n-planes represented by an n × 2n matrix where the
last n × n minor is non-vanishing. On such a matrix, after performing row operations so that the
right n × n block is the identity matrix, the condition that Q = 0 is equivalent to the left block being
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skew. Moreover, on the affine patch N , the (n − 1) × (n − 1) pfaffians of the left skew matrix give
Plücker coordinates cutting out a particular Schubert variety X ⊂ OG(n, 2n) of codimension 3.
Thus the Buchsbaum-Eisenbud structure theorem yields a map SpecR → N , through which the
local defining equations of X at the “origin” in N (representing the isotropic n-plane F1 ⊂ F∗1 ⊕ F1)
pull back to the generators of the ideal I ⊂ R. For a thorough explanation of this perspective, we
refer to [8].

We will show that this formulation of the Buchsbaum-Eisenbud structure theorem realizes it as
the type D case of an ADE correspondence. In general, to deviation d(I) and type r(R/I), we
associate the T-shaped graph with arms of length 1, d(I), and r(R/I). This graph T is the Dynkin
diagram

● An if d(I) = 0 and r(R/I) = n − 2,
● Dn if d(I) = 1 and r(R/I) = n − 3 or vice versa,
● E6 if d(I) = r(R/I) = 2,
● E7 if d(I) = 2 and r(R/I) = 3 or vice versa,
● E8 if d(I) = 2 and r(R/I) = 4 or vice versa.

Let G be the associated group, and let x1 ∈ T be the node on the arm of length 1. We will show that
generic examples of perfect ideals with the given type and deviation come from a certain codimen-
sion 3 Schubert variety inside of the homogeneous space G/Px1 where Px1 is the maximal parabolic
for the node x1.

The type A case of the correspondence is uninteresting, as it occurs only when d(I) = 0. This
necessarily means that I is generated by a regular sequence—in particular, r(R/I) = 1. The homo-
geneous space is G/Px1 = SL3/P1 = P3 in this case, and the Schubert variety X is a point, which is
indeed a complete intersection.

Wementioned above that there are two different families of perfect ideals with d(I) = r(R/I) = 2.
This happens because the map Spec k → SpecR → G/Px1 = E6/P2 lands in one of two strata of
X ⊂ E6/P2, depending on whether the aforementioned multiplication on the Tor algebra is zero. We
will describe these strata in §4 and revisit this in Example 4.8.

To achieve our goals, the main tool we will need is an appropriate generalization of the n × 2n
blockmatrix leveraged in theGorenstein case, and this is provided by the theory of “higher structure
maps” originating from Weyman’s generic rings for resolutions of length three. We now briefly
explain this; more details will be given in §2. Given a complex

F∶0→ Fm
dmÐ→ ⋯→ F1

d1Ð→ F0,
where Fi = R f i , we refer to the sequence ( f0, f1, . . . , fm) as the format of F. In the event that F is a
minimal resolution over a local ring R, the fi are the ordinary Betti numbers of the module H0(F),
but we will benefit from working in greater generality. For each fixed format ( f0, f1, f2, f3) of length
three, Weyman constructed in [19] and [18] a resolution Fgen over a ring R̂gen with the property that
it specializes to any free resolution of the given format.

This ring is a finitely generated C-algebra if and only if the format ( f0, f1, f2, f3) is one listed in
Table 1. These are calledDynkin formats, because the structure of R̂gen is closely tied to a Kac-Moody
Lie algebra g that is finite-dimensional (i.e. of Dynkin type) exactly in these cases. Henceforth we
will always assume this to be the case.

Wewill explain the Lie algebra g and its relation to R̂genmore precisely in §2. For nowwe comment
that there are three representations inside of R̂gen of particular interest: namely those generated by
the entries of the differentials di ofFgen. We call these the critical representations. They have a graded
decomposition in which each graded component is a representation of ∏GL(Fi) where Fi = C f i .
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Table 1. Length three formats with Noetherian R̂gen

Type Dn Type E6 Type E7 Type E8

(1, n, n, 1) (1, 5, 6, 2) (1, 6, 7, 2) (1, 7, 8, 2) Format I (dual to VI)
(1, 4, n, n − 3) (1, 5, 7, 3) (1, 5, 8, 4) Format II (linked to I)
(n − 3, n, 4, 1) (2, 6, 5, 1) (3, 7, 5, 1) (4, 8, 5, 1) Format III (dual to II)

(2, 5, 5, 2) (3, 6, 5, 2) (4, 7, 5, 2) Format IV (linked to III)
(2, 5, 6, 3) (2, 5, 7, 4) Format V (dual to IV)
(2, 7, 6, 1) (2, 8, 7, 1) Format VI (linked to V)

We have displayed pieces of them below.

W(d3) = F∗2 ⊗ [F3 ⊕
f0+1

⋀ F1 ⊕⋯]

W(d2) = F2 ⊗ [F∗1 ⊕ F∗3 ⊗
f0
⋀ F1 ⊕⋯]

W(d1) = F∗0 ⊗ [F1 ⊕ F∗3 ⊗
f0+2

⋀ F1 ⊕⋯]

Given a homomorphism w∶ R̂gen → R specializing Fgen to F, restriction toW(di) yields maps

w(3)∶R ⊗ [F3 ⊕
f0+1

⋀ F1 ⊕⋯]→ R ⊗ F2

w(2)∶R ⊗ [F∗1 ⊕ F∗3 ⊗
f0
⋀ F1 ⊕⋯]→ R ⊗ F∗2

w(1)∶R ⊗ [F1 ⊕ F∗3 ⊗
f0+2

⋀ F1 ⊕⋯]→ R ⊗ F0
By abuse of notation we will sometimes write Fi to mean Fi ⊗ R when the meaning can be inferred
from context. We writew(i)j for the j-th component of the mapw(i), with indexing starting at j = 0.
For instance w(3)0 ∶ F3 → F2 is just the differential d3 of F. Likewise w(2)0 = d∗2 and w(1)0 = d1. If F
resolves R/I for some ideal I of grade at least1 2, then the maps w(i)1 give a choice of multiplica-
tive structure on F lifting that on Tor∗(R/I, k). In general we will refer to the maps w(i) and their
components w(i)j as “(higher) structure maps” for the resolution F.

Themain technical result we will establish in §3 is that the surjectivity of the mapsw(i) is guaran-
teed if the Betti numbers of R/I are Dynkin. This should be viewed as the substitute for the perfect
pairing F1 ⊗ F2 → F3 used in the Gorenstein case to identify F1 ≅ F∗2 , which gave surjectivity of the
n × 2n matrix.

Theorem 3.1. Suppose that F is a resolution of Dynkin format over aQ-algebra R such that its dual
F∗ is also acyclic. Then if w∶ R̂gen → R specializes Fgen to F, the maps w(i) are surjective.

Remark 1.1. Also of interest is the representationW(a2) generated by the entries of the Buchsbaum-
Eisenbud multiplier a2. The product of this representation with a1 appears in the subrepresentation
⋀ f0 F∗0 ⊗ ⋀ f0[F1 ⊕ ⋯] of S f0W(d1), which is to say the f0 × f0 minors of w(1). We will show that

1To be precise, it gives a choice of multiplicative structure on 0→ F3 → F2 → F1
a2Ð→ R where a2 comes from the First

Structure Theorem of [4]. If I has grade at least 2, then it is equal to the image of a2.
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the restriction of w toW(a2) is surjective as well, but the importance of consideringW(a2) is only
apparent when dealing with module formats with f0 > 1.

In §2, we provide background on Lie algebras, R̂gen, and Schubert varieties. Then we will prove
Theorem 3.1 in §3, and deduce some restrictions on graded Betti tables as a corollary. If F resolves
R/I for a grade three perfect ideal I in a local ring (R,m), the surjectivity of w(1) in Theorem 3.1
is equivalent to the map being nonzero mod m. Given this, we can ask for the first component of
this structure map that is nonzero mod m. After posing this question more precisely, we will show
in §4 that it has a well-defined answer for each ideal I, which may be used to classify the ideal. As
an example in a very simple case, if w(1)1 ∶ F∗3 ⊗ ⋀3 F1 → R is nonzero mod m, then I is a complete
intersection. From the geometric perspective, this first nonzero component determines the stratum
of the Schubert variety X ⊂ G/Px1 in which the map Spec k → SpecR → G/Px1 lands, and using this
we show how the local defining equations of X ⊂ G/Px1 yield generic perfect ideals. Theorem 3.1
fails without the Dynkin hypothesis: the ideal I = (x , y, z)2 ⊂ R = C[x , y, z](x ,y,z) is perfect of grade
three, with r(R/I) = 3 and d(I) = 3 (T = Ẽ7 is not Dynkin), and one can show that all entries of
w(i) lie inm = (x , y, z) so the maps cannot be surjective. This failure ofTheorem 3.1 is related to the
theory of linkage, and this will be discussed further in §5, together with other directions for future
study.

2. Background

In this section we gather the necessary background on Lie algebras in §2.1, the generic ring R̂gen
in §2.2, and Schubert varieties in §2.3. We will need §2.1 and §2.2 for §3. The background given in
§2.3 will be needed for §4. To streamline the exposition, we will work in the category ofC-algebras,
but as we discuss in §2.2.6, our main results hold overQ.

2.1. Lie algebras.

2.1.1. Construction. Fix integers p, q, r ≥ 1, and let T denote the graph

xp−1 ⋯ x1 u y1 ⋯ yq−1

z1

⋮

zr−1

Let n = p + q + r − 2 be the number of nodes. From the above graph, we construct an n × n matrix
A, called the Cartan matrix, whose rows and columns are indexed by the nodes of T :

A = (ai , j)i , j∈T , ai , j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2 if i = j,
−1 if i , j ∈ T are adjacent,
0 otherwise.

In this paper we will only consider the situation when T is a Dynkin diagram. In terms of the
parameters p, q, and r, this is equivalent to the inequality 1/p + 1/q + 1/r > 1. We next describe how
to construct the associated Lie algebra g.
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Let h = Cn, and take Π = {αi}i∈T in h∗ to be the coordinate functions. These are the simple roots.
Let Π∨ = {α∨i }i∈T be elements of h such that

⟨α∨i , α j⟩ = ai , j.

These are the simple coroots. The Lie algebra g ∶= g(T) is generated by elements ei , fi for i ∈ T ,
subject to the defining relations

[ei , f j] = δi , jα∨i ,
[h, ei] = ⟨h, αi⟩ei , [h, fi] = −⟨h, αi⟩ fi for h ∈ h,

[h, h′] = 0 for h, h′ ∈ h,
ad(ei)1−a i , j(e j) = ad( fi)1−a i , j( f j) for i ≠ j.

Under the adjoint action of h, the Lie algebra g decomposes into eigenspaces as g =⊕gα, where

gα = {x ∈ g ∶ [h, x] = α(h)x for all h ∈ h}.

This is the root space decomposition of g.

2.1.2. Gradings on g. Let Q ⊂ h∗ be the root lattice⊕i∈T Zαi . If gα ≠ 0, then necessarily α ∈ Q. If
such an α is nonzero, we say it is a root. Hence the Lie algebra g isQ-graded. By singling out a vertex
t ∈ T , this Q-grading can be coarsened to a Z-grading by considering only the coefficient of αt . We
refer to this as the t-grading. The sum of all t-gradings for t ∈ T is called the principal gradation on
g. The degree zero part in the principal gradation is the Cartan subalgebra h.
Using these notions, we define a few important subalgebras of g:
● Let n+, n− denote the positive and negative parts of g in the principal gradation.
● Let b+, b− denote the nonnegative and nonpositive parts of g in the principal gradation. That
is, b+ = n+ + h and b− = n− + h.
● For t ∈ T , let n+t , n−t denote the positive and negative parts of g in the t-grading.
● For t ∈ T , let p+t , p−t denote the nonnegative and nonpositive parts of g in the t-grading.

Write hi ∈ h for the basis dual to the simple roots αi ∈ h∗. The degree zero part of g in the t-grading
is

g(t) ×Cht

where g(t) is the subalgebra generated by {ei , fi}i≠t and Cht is the one-dimensional abelian Lie
algebra spanned by ht . The decomposition of g into t-graded components is just its decomposition
into eigenspaces for the adjoint action of ht :

g =⊕
j∈Z

ker(ad(ht) − j).

We will be primarily interested in the t-grading when t ∈ {x1, z1}.
● The diagram T − {x1} consists of a diagram Ap−2 with vertices x2, . . . , xp−1 and Aq+r−1 with
vertices yq−1, . . . , y1, u, z1, . . . , zr−1. Hencewriting F0 = Cp−1 and F2 = Cq+r, we identify g(x1) =
sl(F0) × sl(F2).
● The diagram T − {z1} consists of a diagram Ap+q−1 with vertices yq−1, . . . , y1, u, x1, . . . , xp−1
and Ar−2 with vertices z2, . . . , zr−1. Hence writing F1 = Cp+q and F3 = Cr−1, we identify
g(z1) = sl(F1) × sl(F3).
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2.1.3. Representations. Let V be a representation of g. For λ ∈ h, define the λ-weight space of V to
be

Vλ = {v ∈ V ∶ hv = λ(h)v for all h ∈ h}.

If Vλ ≠ 0, then we say λ is aweight of V . A nonzero vector v ∈ Vλ is a highest weight vector if n+v = 0.
If such a v generates V as a g-module, then we say V is a highest weight module with highest weight
λ.
Let U denote the universal enveloping algebra functor. Representations of g are equivalent to

modules over U(g). Given λ ∈ h∗, the Verma module M(λ) is defined to be

M(λ) = U(g)⊗U(b+) Cλ .

Here Cλ is the b+-module where h acts by λ and n+ acts trivially. All the weights of M(λ) are in
λ + Q. If v ∈ Vλ is a highest weight vector, then there is a map M(λ) → V sending 1 ↦ v. If V is a
highest weight module then this map is surjective.

Every Verma module M(λ) has a unique maximal proper submodule J(λ), namely the sum of
all submodules which do not contain v. It follows that V(λ) = M(λ)/J(λ) is an irreducible highest
weight module with heighest weight λ, and any such module is isomorphic to V(λ).
Let ωi ∈ h∗ be the basis dual to α∨i ∈ h. Explicitly, ωi is the linear combination of αi given by the

i-th column of A−1. These are the fundamental weights, and the representations V(ωi) are called
fundamental representations. Their nonnegative integral span is the collection of dominant weights,
and the representation V(λ) is finite-dimensional when λ is dominant.
One can alternatively workwith lowest weights instead of highest weights, interchanging the roles

of positive and negative parts of the Lie algebra in all of the preceding. We will write V(λ)∨ for
the irreducible representation with lowest weight −λ. If V(λ) is finite-dimensional, then V(λ)∗ =
V(λ)∨. In general, (−)∨ represents the “restricted” dual.

Remark 2.1. It is possible to define a linear algebraic groupG with associated Lie algebra g along the
lines of §2.1.1; see also the discussion at the beginning of §2.3. We will not need it, so we omit doing
so. But from §2.1.2, we certainly have the actions of the groups SL(Fi) on g and its representations
V(λ) whenever λ is dominant and integral, and we will make use of this.

2.1.4. Weight grading on representations. The decomposition of V(λ) into weight spaces gives an
h∗-grading on V(λ). Moreover, all the weights of V(λ) are in the translate λ+⊕i∈T Zαi of the root
lattice.

In §2.1.2 it was described how singling out a vertex t ∈ T allows us to impose a Z-grading on g
by considering only the coefficient of αt in the h∗-grading. This works for representations V(λ) as
well: if v ∈ V(λ) is a highest weight vector then htv = ⟨ht , λ⟩v and the eigenvalues for the action of
ht on V(λ) are ⟨ht , λ⟩, ⟨ht , λ⟩ − 1, . . ., terminating iff V(λ) is finite-dimensional. The eigenspaces
give the t-graded components. Each one is a representation of the subalgebra g(t) × Cht ⊂ g. In
particular, v is a highest weight vector for the top graded component, thus this component is the
representation of g(t) with highest weight∑i≠t ciωi if λ = ∑i∈T ciωi .

2.1.5. Exponential action and Baker-Campbell-Hausdorff. Let⊕i>0Li be a strictly positively graded
Lie algebra. Its bracket naturally extends to one on L = ∏i>0Li . (For us, this Lie algebra will
generally be n±t for some t ∈ T , and since we are only considering Dynkin T , there are only finitely
many components and thus the direct sum and product are the same.) Suppose R is an R0-algebra on
which L acts by locally nilpotent R0-linear derivations. Here “locally nilpotent” means that for any
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Lie algebra element X and ring element f ∈ R, we have XN f = 0 for N ≫ 0. Then the exponential

expX = Id + X + 1
2!
X2 + 1

3!
X3 +⋯

defines an R0-algebra automorphism of R.
Moreover, given Lie algebra elements X ,Y ∈ L, the Baker-Campbell-Hausdorff formula gives a

well-defined element Z ∈ L such that expZ = (expX)(expY):

Z = X + Y + 1
2
[X ,Y] + 1

12
[X , [X ,Y]] − 1

12
[Y , [X ,Y]] +⋯.

Wewill not need the explicit expression for Z, only that such an expression exists in terms of iterated
commutators.

2.2. The generic ring R̂gen.

2.2.1. Generic free resolutions. Let F be a complex of free modules

F∶0→ Fc → Fc−1 → ⋯→ F1 → F0
over some ring R. The format of F is the sequence of numbers ( f0, f1, . . . , fc) where fi = rank Fi .

Let S be a ring andG a resolution over S with format ( f0, . . . , fc). We say that (S ,G) is generic for
the given format if, given any resolution F of the same format over some ring R, there exists a map
φ∶ S → R specializing G to F. Note that we do not require the map φ to be unique: Bruns showed
that this is a mandatory concession for c ≥ 3 [2]. We will only be concerned with c = 3 in this paper
and we henceforth restrict to this case.

2.2.2. The first structure theorem of Buchsbaum and Eisenbud. The first structure theorem of [4] is
essential to the construction ofWeyman’s generic ring. We recall it here with two small adjustments:
we state it only for c = 3 and we avoid identifying top exterior powers with the base ring in the
interest of doing things GL(Fi)-equivariantly.

Theorem2.2. Let 0→ F3
d3Ð→ F2

d2Ð→ F1
d1Ð→ F0 be a complex of free modules, acyclic in grade 1, of format

( f0, f1, f2, f3) over R. Then there are uniquely determined maps a3, a2, a1, constructed as follows:
● a3 is the top exterior power

a3∶
f3
⋀ F3 →

f3
⋀ F2.

● a2 is the unique map making the following diagram commute, where r2 = f2 − f3 = f1 − f0 is the
rank of the differential d2:

⋀r2 F2 ⋀r2 F1

⋀ f3 F∗3 ⊗⋀ f2 F2

−∧a3 a2

● a1 is the unique map making the following diagram commute:

⋀ f0 F1 ⋀ f0 F0

⋀ f3 F3 ⊗⋀ f2 F∗2 ⊗⋀ f1 F1

−∧a2 a1
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Note that a1 is just a scalar. If grade I f0(d1) ≥ 2, then a1 is an isomorphism, and we will use this
in §3.

2.2.3. Construction of R̂gen. Fix a length 3 format ( f0, f1, f2, f3). The generic pair (R̂gen,Fgen) was
constructed byWeyman in [19], and the acyclicity ofFgenwas proven in [18]. Wewill only summarize
some details of the construction here.

Theorem 2.2 can be used to construct a free complex Fa of the given format over a ring Ra, called
the Buchsbaum-Eisenbud multiplier ring, such that Fa is acyclic in grade 1 and is universal with
respect to this property. In particular, if F is any resolution of the same format over some ring R,
then there is a unique map Ra → R specializing Fa to F.
However, Fa is not acyclic: letting di denote the differentials of Fa and ri their ranks, we have

grade Ir3(d3) = 2, grade Ir2(d2) = 2, grade Ir1(d1) = 1.

We recall the Buchsbaum-Eisenbud acyclicity criterion from [5]: a finite free complex is acyclic
exactly when grade Ir i(di) ≥ i and fi = ri+1 + ri for all i. The latter condition on rank is satisfied, but
the grade of Ir3(d3) is too low.

This leads to the basic idea underlying the construction of Weyman’s generic pair (R̂gen,Fgen):
kill H2 in the Koszul complex on ⋀r3(d3) to increase the grade of Ir3(d3) from 2 to 3. It is this
process that introduces the non-uniqueness of the map φ alluded to in §2.2.1. Explicitly, writing
K = ⋀ f3 F∗3 ⊗⋀ f3 F2, this is an inductive procedure illustrated in the diagram below.

(2.1)
0 ⋀0K ⋀1K ⋀2K ⋀3K

L∗i (⋀2L∗)i

p i q i

Here L is a graded Lie algebra, called the defect Lie algebra, and the lower horizontal map is dual to
the bracket inL. Themap q1 is defined using the Second StructureTheorem of [4], and qm form ≥ 2
is defined using pi for i < m. For positive integers m, define Rm to be the ring obtained from Ra by
adjoining variables for the coordinates of p1, . . . , pm, quotienting by all relations they would satisfy
on a split exact complex (see for instance [19, Lemma 2.4]), and taking the ideal transform with
respect to Ir2(d2)Ir3(d3). The ring R̂gen is defined to be the limit of the rings Rm, andFgen ∶= Fa⊗R̂gen.

2.2.4. Exponential action of the defect Lie algebra. Given a free resolution F over some ring R, to
determine a map R̂gen → R specializing Fgen to F, it is sufficient to specify the images of the maps pi
in R. Having chosen pi for i < m, the diagram (2.1) shows that the non-uniqueness of pm lifting qm
is exactly Hom(L∗m ,⋀0K) = Lm⊗R. In [19], the action ofL on R̂gen by derivations is described, and
it was observed in [12, Theorem 3.1] that different choices of maps R̂gen → R specializing Fgen to the
same resolution F are related by the exponential action of a unique element of L ⊗ R on R ⊗ R̂gen.
We restate the result here:

Theorem 2.3. Let F be a resolution of length three over R and let R̂gen be the generic ring for the asso-
ciated format. Fix aC-algebra homomorphism w∶ R̂gen → R specializing Fgen to F. Then w determines
a bijection

L⊗ R ≃ {C-algebra homomorphisms w′∶ R̂gen → R specializing Fgen to F}.
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Note that a C-algebra homomorphism R̂gen → R can be viewed as an R-algebra homomorphism
R ⊗ R̂gen → R. The correspondence above identifies X ∈ L ⊗ R with the map w expX obtained by
precomposing w with the action of expX on R ⊗ R̂gen.

Thus the defect Lie algebra parametrizes the collection of maps R̂gen → R specializing Fgen to F
in a very precise sense.

2.2.5. The critical representations and higher structure maps. One of the main results of [18] is that
the defect Lie algebra L is a subalgebra of the Lie algebra g defined in §2.1 for the diagram T with
p = f0 + 1, q = f1 − f0 − 1, and r = f3 + 1. Specifically, L is the negative part2 n−z1 of g in the grading
induced by the vertex z1 (c.f. §2.1.2).

The actions of sl(Fi) andL on R̂gen can be combined and extended to an action of sl(F0)×sl(F2)×
g. (The reason we say sl(Fi) here instead of gl(Fi) is somewhat subtle; see Remark 2.4.) The decom-
position of R̂gen into representations for this product is detailed in [18]. Of these representations,
there are a few of particular interest, which we call the critical representations—they are the ones
generated by the entries of the differentials di and Buchsbaum-Eisenbud multipliers ai for Fgen. We
denote these representations byW(di) andW(ai) respectively. Let V−(−λ) be the irreducible rep-
resentationwith lowest weight−λ (c.f. §2.1) and letM = ⋀ f3 F3⊗⋀ f2 F∗2 ⊗⋀ f1 F1. The aforementioned
representations are

W(d3) = F∗2 ⊗ V−(−ωzr−1)

= F∗2 ⊗ [F3 ⊕M∗ ⊗
f0+1

⋀ F1 ⊕⋯]
W(d2) = F2 ⊗ V−(−ωyq−1)

= F2 ⊗ [F∗1 ⊕M∗ ⊗ F∗3 ⊗
f0
⋀ F1 ⊕⋯]

W(d1) = F∗0 ⊗ V−(−ωxp−1)

= F∗0 ⊗ [F1 ⊕M∗ ⊗ F∗3 ⊗
f0+2

⋀ F1 ⊕⋯]

W(a3) =
f3
⋀ F∗2 ⊗ V−(−ωz1)

=
f3
⋀ F∗2 ⊗ [

f3
⋀ F3 ⊕⋯]

W(a2) =
f2
⋀ F2 ⊗ V−(−ωx1)

=
f2
⋀ F2 ⊗ [

r2
⋀ F∗1 ⊗

f3
⋀ F∗3 ⊕⋯]

W(a1) =
f0
⋀ F∗0 ⊗

f1
⋀ F1 ⊗

f2
⋀ F∗2 ⊗

f3
⋀ F3

(2.2)

Remark 2.4. One subtlety to point out is that while the decomposition of each g-representation
into sl(F3)× sl(F1)-representations follows from §2.1.2 using the vertex z1 ∈ T , the actions of gl(Fi)
are not entirely visible from that of sl(F0) × sl(F2) × g. This is clear for W(a1) as an example: it is
the trivial representation for this product, but it is not the trivial representation for∏gl(Fi). To see

2To bemore precise, it is the “completion” of the negative part of gwhere one takes the product of the graded compo-
nents instead of the direct sum as mentioned in §2.1.5, but this only makes a difference when g is infinite-dimensional
(i.e. T is not a Dynkin diagram). We do not consider that case here.
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the actions of∏gl(Fi) and g together on R̂gen, it is necessary to add another (abelian) factor t to the
product—this is discussed in [12] but will not be important here.

The representations W(d3), W(d2), W(d1), W(a2), and W(a1) generate R̂gen as an algebra [12,
Prop. 6.1]. If w∶ R̂gen → R specializes Fgen to a resolution F, then the restriction of w to ⊕W(di)
determines w uniquely.

Given a map w∶ R̂gen → R for a complex (R,F), we denote by w(i) the restriction of w to the
representationW(di) ⊂ Rgen andw(a i) the restriction ofw to the representationW(ai). We typically
view these maps as having source R ⊗ V−(−ω), e.g. we think of w(3) as a map

w(3)∶R ⊗ V−(−ωzr−1) = R ⊗ [F3 ⊕M∗ ⊗
f0+1

⋀ F1 ⊕⋯]→ R ⊗ F2.

We use w(∗)j to denote the restriction of w(∗) to the j-th graded component of the representation,
indexed so that j = 0 corresponds to the bottom graded piece. For instance, w(i)0 = di for i = 1, 3
andw(2)0 = d∗2 . We call the mapsw(∗)>0 (a specific choice of) higher structure maps for F. We refer the
reader to [12, Example 3.3] for a demonstration of Theorem 2.3 in the context of higher structure
maps.

2.2.6. The ground field. REWRITE
More precisely, the following construction via the Chevalley-Serre relations yields the “split form”

of g.
One crucial detail that we have omitted until now is that Weyman constructed and studied R̂gen

overC, rather thanC. However, the construction of R̂gen and its decomposition into representations
still make sense over Q, and they are compatible with base-change from Q to C. In other words,
if we use (R̂gen,Fgen) to denote the objects as constructed here over Q, then [19] and [18] study the
pair (R̂gen ⊗Q C,Fgen ⊗Q C).

A lot of machinery is involved in proving the acyclicity of Fgen ⊗Q C in [18]. One might be con-
cerned about checking all of it over Q instead, but we point out two reasons why this will not pose
an issue for us:

● A complex F over Q is acyclic if and only if F ⊗Q C is. Thus the acyclicity of Fgen follows
immediately from the acyclicity of Fgen ⊗Q C already established.
● We will never actually use the acyclicity of Fgen at any point in this paper! This may come
as a surprise, but notice that the classical Hilbert-Burch theorem does not actually claim the
universal example to be acyclic—that is a separate result. Similarly, the first structure theo-
rem of Buchsbaum and Eisenbud does not include the statement that (Ra ,Fa) is universal
for finite free complexes acyclic in grade 1. In essence, the fact that these theorems can be
recast as “universal examples” is a certification that they are the best possible structure theo-
rems for their respective objects. From this perspective, it is less surprising that (R̂gen,Fgen)
has utility independent of the acyclicity of Fgen.

2.3. Schubert varieties. Working overC, there is a unique simply connected Lie group G with Lie
algebra g ⊗ C. The representations of G correspond to those of g ⊗ C. For a fundamental weight
ωt , the action of G on the highest weight line in P(V(ωt)) has stabilizer P+t , the subgroup of G
corresponding to the maximal parabolic subalgebra p+t ⊗C as defined in §2.1.2. Hence the orbit of
this highest weight line can be identified with the homogeneous space G/P+t . For Dynkin type An
with the standard labeling of vertices, this construction produces the Grassmannian Gr(t, n + 1).
Accordingly, the reader may think of G/P+t as a “generalized Grassmannian.”
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In the interest of only introducing what is necessary for discussing our results over C, we will
not take this perspective and we will instead define all the objects we need completely algebraically.
However, we will use notation which alludes to the geometric construction. For instance we will
define the scheme “G/P+t ” via its homogeneous coordinate ring, without actually defining G, the
subgroup P+t , or what it means to take a quotient. In a similar vein we will also define notions such
as “P−t -orbits,” although we will include some remarks to motivate such terminology.

That being said, we will occasionally want to use legitimate group actions, but the group in each
case will either be the special or general linear group (c.f. Remark 2.1), or the exponential of some
Lie algebra whose elements have locally nilpotent actions (so that the exponential is algebraically
well-defined).

2.3.1. Definition of the homogeneous spaceG/P. Pick a vertex t ∈ T , letωt be the corresponding fun-
damental weight, and V(ωt) the irreducible representation with highest weight ωt . Let V−(−ωt)
be the irreducible representation with lowest weight −ωt ; since these representations are finite-
dimensional we have V(ωt)∗ = V−(−ωt). Let A be the C-algebra

⊕
n≥0

V−(−nωt) = (SymV−(−ωt))/IPlücker

where, viewing SymV−(−ωt) as polynomial functions on V(ωt), the ideal IPlücker is comprised of
subrepresentations vanishing on a highest weight vector v ∈ V(ωt). As an ideal it is generated by
quadrics, namely the irreducible representations in S2V−(−ωt) other than V−(−2ωt). These are the
Plücker relations.
The ring A is graded with V−(−ωt) in degree 1. We define

G/P+t ∶= ProjA ⊂ P(V(ωt)).

Remark 2.5. By taking just the C-points of this scheme, one recovers the object described at the
beginning of this section.

2.3.2. Weyl group and subgroups. LetW denote the Weyl group associated to T . It is generated by
the simple reflections {si}t∈T . Explicitly,

W = ⟨{si}i∈T ∣ (sis j)m i j = 1⟩

where mi j = 1 if i = j, mi j = 2 if i , j ∈ T are not adjacent, and mi j = 3 if i , j ∈ T are adjacent. Since
we are assuming T to be a Dynkin diagram,W is finite.

TheWeyl group acts on h∗: the simple reflections act via

si(λ) = λ − ⟨α∨i , λ⟩αi .

Remark 2.6. It is also possible to lift (non-uniquely) each element σ ∈W to the groupGmentioned
in Remark 2.1. We can circumvent dealing with the group G by noting that each individual simple
reflection st can be lifted to an element of the group SL2 corresponding to the Lie algebra sl2 spanned
by et , ft , α∨t . This group acts on g and its representationsV(λ) for λ dominant. We can get an action
of any σ ∈W by writing it as a product of simple reflections.

We will often abuse notation and write e.g. σv with σ ∈W and v ∈ V(λ) when we really mean to
pick a lift of σ and then act by that on v. One explicit choice lifting st is exp( ft) exp(−et) exp( ft),
though the particular choice will not matter for our purposes.

The length ℓ(σ) of an element σ ∈ W is the minimum number of simple reflections needed to
express σ as a product of simple reflections. There is a unique longest element w0 ∈W .
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If t ∈ T , we let WPt ⊂ W denote the subgroup generated by all simple reflections other than
st . Every coset W/WPt has a minimal length representative, and the set of such representatives is
denoted byWPt .

2.3.3. Plücker coordinates and Schubert cells. Let v ∈ V(ωt) be a highest weight vector, and [v] ∈
P(V(ωt)) its span. The subgroupWPt stabilizes [v], so the extremal weights in P(V(ωt)) are σ[v]
for σ ∈WPt . Let k be a field of characteristic zero. The k-points of G/P+t decompose into a disjoint
union of Schubert cells

(G/P+t )(k) = ∐
σ∈WPt

Cσ(k)

where Cσ(k) is the orbit of the k-point σ[v] under the action of exp(n− ⊗ k). For j ∈ T and [σ] ∈
WPj/W/WPt , we say that the union of Schubert cells

∐
σ ′∈WPt ,[σ ′]=[σ]

Cσ(k)

is a P−j -orbit, where the union is taken over σ ′ representing the same double coset as σ . See also
Remark 2.7.

The variables ofA are called Plücker coordinates. Let pe denote a lowest weight vector of V−(−ωt)
and for σ ∈WPt let pσ = σ pe . The set {pσ ∶ σ ∈WPt} is the set of extremal Plücker coordinates. The
representation V−(−ωt)may have weights other than those in theW-orbit of −ωt ; these remaining
Plücker coordinates are called non-extremal. (The representation is miniscule if all weights belong
to the sameW-orbit, in which case all Plücker coordinates are extremal.)

The Plücker coordinate pσ vanishes on the Schubert cell Cw(k) iff σ /≥ w in the Bruhat order.

2.3.4. TheSchubert variety Xw . Using the samenotation as above, letn−wv denote then−-representation
generated by wv inside of V(ωt). This is a Demazure module. Let I(Xw) be the ideal of A gener-
ated by the elements of V−(−ωt) = V(ωt)∗ which vanish on n−wv. The Schubert variety Xw is the
subscheme cut out by I(Xw).

We will only be interested in a very specific Schubert variety, so we will now specialize the dis-
cussion accordingly. For the remainder of §2.3, we will always assume that p = 2 and t = x1, so that
the distinguished node is the only node on the left arm. Let w = sz1 susx1 ; it is a minimal length rep-
resentative for its coset in W/WPx1 . We define Xw as above. The Plücker coordinates which vanish
on n−wv ⊂ V(ωx1) are exactly those in the bottom z1-graded component F1 ⊂ V−(−ωx1) (c.f. §2.1.2
for explanation of Fi). Explicitly these are the following q+ 2 coordinates, all of which are extremal:

pe , psx1 , psu sx1 , . . . , psyq−1⋯sy1 su sx1 .

All Schubert varieties are by construction preserved under the exponential action of n−, but this one
is moreover preserved under the action of SL(F1) × SL(F3) corresponding to the subdiagram T −
{z1}. Hence it is preserved under the action of the semidirect product exp(n−z1)⋊(SL(F3)×SL(F1))

Remark 2.7. This semidirect product is not exactly equal to the group P−z1 whose definition we
have omitted, but it results in the same orbits on G/P+x1 , and thus will suffice as a substitute for our
purposes. The Schubert variety Xw can also be described as the complement of the open P−z1-orbit.

2.3.5. Affine patches. The scheme G/P+t is covered by the open sets σCe ∶= {pσ ≠ 0} for σ ∈ WPt .
Each of these is isomorphic to affine space of dimension ℓ(wPt

0 )wherew
Pt
0 ∈WPt is aminimal length

representative of [w0] ∈W/WPt . This is the dimension of n−t , the negative part of g in the t-grading,
and this algebra can be used to explicitly identify σCe with affine space as follows.
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Let S be the polynomial ring Sym(n−t )∗ and let

Z ∈ n−t ⊗ (n−t )∗ ⊂ n−t ⊗ S

be adjoint to the identity on n−t . We think of Z as the “generic element” of n−t . Then σCe may be
parametrized as

S
itopx1Ð→ S ⊗ V(ωx1)

σ exp Z
ÐÐÐ→ S ⊗ V(ωx1)

where itopx1 denotes the inclusion of the top x1-graded component.

2.3.6. The coordinate ring of Xw restricted to an open cell. Combining §2.3.5 with §2.3.4 and using
the same notation, we get that the entries of the composite

d∗1 ∶ S
itopx1Ð→ S ⊗ V(ωx1)

σ exp Z
ÐÐÐ→ S ⊗ V(ωx1)

ptopz1ÐÐ→ S ⊗ F∗1
give the equations cutting out Xw restricted to σCe , where ptopz1 denotes the projection onto the top
z1-graded component. Defining d1 to be the dual of this composite, its cokernel is the coordinate
ring of Xw ∩ σCe . Moreover, it is shown in [13] how to extend this to a free resolution: define d2 to
be

d2∶ S ⊗ F2
itopx1Ð→ S ⊗ V(ωyd)

σ exp Z
ÐÐÐ→ S ⊗ V(ωyd)

ptopz1ÐÐ→ S ⊗ F1
and d3 to be the dual of

d∗3 ∶ S ⊗ F∗2
itopx1Ð→ S ⊗ V(ωzt)

σ exp Z
ÐÐÐ→ S ⊗ V(ωzt)

ptopz1ÐÐ→ S ⊗ F∗3 .

Theorem 2.8. Themaps defined above assemble into a resolution of the coordinate ring of Xw ∩ σCe :

0→ S ⊗ F3
d3Ð→ S ⊗ F2

d2Ð→ S ⊗ F1
d1Ð→ S .

Proof. The paper [13] actually only discussed the case σ = w0, in which case applying w0 and then
projecting onto the top z1-graded component is the same as projecting onto the bottom z′1-graded
component, where z′1 is the node on T “dual” to z1 if T has exceptional duality (c.f. [13, Remark
2.2]). That is the manner in which the differentials are presented in the referenced paper. But this
was just a matter of perspective and not the result of any technical limitation, as we will discuss
briefly around Theorem 4.10. The proof of [13, Lemma 2.4] works exactly the same, showing that
this is a complex. For acyclicity, the proof of [13, Theorem 5.1] shows how one can find powers of
the Plücker coordinates among the minors of di . The only difference is that these are now written
in terms of the affine coordinates on the patch σCe instead of w0Ce , but that is inconsequential to
the proof. □

Localizing this at the “origin” σ[v] of the affine patch σCe , corresponding to the ideal of variables
in S, gives a resolution of the local ringOXw ,σ[v] overOG/P+t ,σ[v].

3. Surjectivity of the maps w(i)

In this section we will prove the main technical result of this paper, which underlies the classifi-
cation in subsequent sections.

Theorem 3.1. Suppose we have a free resolution

F∶0→ F3 → F2 → F1 → F0
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of Dynkin format f = ( f0, f1, f2, f3) over a C-algebra R, whose dual 0 → F∗0 → F∗1 → F∗2 → F∗3 is
also acyclic. Let R̂gen( f ) be the generic ring associated to the format f , and w∶ R̂gen( f ) → R a map
specializing Fgen to F. Then the structure maps

w(3)∶R ⊗ V−(−ωzr−1) = R ⊗ [F3 ⊕M∗0 ⊗
f0+1

⋀ F1 ⊕⋯]→ R ⊗ F2

w(2)∶R ⊗ V−(−ωyq−1) = R ⊗ [F∗1 ⊕M∗0 ⊗ F∗3 ⊗
f0
⋀ F1 ⊕⋯]→ R ⊗ F∗2

w(1)∶R ⊗ V−(−ωxp−1) = R ⊗ [F1 ⊕M∗0 ⊗ F∗3 ⊗
f0+2

⋀ F1 ⊕⋯]→ R ⊗ F0

w(a3)∶R ⊗ V−(−ωz1) = R ⊗ [
f3
⋀ F3 ⊕⋯]→ R ⊗

f3
⋀ F2

w(a2)∶R ⊗ V−(−ωx1) = R ⊗ [
r2
⋀ F∗1 ⊗

f3
⋀ F∗3 ⊕⋯]→ R ⊗

f2
⋀ F∗2

are surjective.

Note that with the assumptions of the theorem, the Buchsbaum-Eisenbud multiplier a1 yields an
isomorphism

a1∶M =
f3
⋀ F3 ⊗

f2
⋀ F∗2 ⊗

f1
⋀ F1

≅Ð→
f0
⋀ F0 = M0.

Using this identification, we have replaced the tensor powers of M∗ appearing in the graded de-
composition of the critical representations by powers of M∗0 . If f0 = 1 (i.e. p = 2), then this also
identifies the map w(1) with w(a2). In the later sections where we classify perfect ideals, we will pri-
marily make use of the surjectivity of w(1). As it is a map to R, its surjectivity is equivalent to being
nonzero modulo the maximal idealm ⊂ R.
The prototypical example ofTheorem 3.1 mentioned in the introduction isw(2) for f = (1, n, n, 1).

This is a n × 2n matrix consisting of the differential d2 and an isomorphism F1 ≅ F∗2 induced by a
choice of multiplication on F. The surjectivity of the matrix is evident from the presence of an
invertible submatrix.

However for other Dynkin formats, it is hard to generalize this method to find an invertible sub-
matrix. Instead, we will prove surjectivity of the maps w(∗) by exhibiting them inside of larger
invertible matrices. We give a brief sketch of the idea; the rest of this section will be devoted to the
details. Since F∗ is also acyclic, there is a map w′∶ R̂gen( f ′) → R where f ′ = ( f3, f2, f1, f0) is the dual
format, specializing the generic resolution to F∗. From this homomorphism, one obtains structure
maps w′(∗) for F∗. After dualizing, these have the form

(w′(3))∗∶R ⊗ F1 → R ⊗ [F0 ⊕M∗3 ⊗
f3+1

⋀ F2 ⊕⋯] = R ⊗ V−(−ωyq−1)

(w′(2))∗∶R ⊗ F∗1 → R ⊗ [F∗2 ⊕M∗3 ⊗ F∗0 ⊗
f3
⋀ F2 ⊕⋯] = R ⊗ V−(−ωyq−1)

(w′(1))∗∶R ⊗ F3 → R ⊗ [F2 ⊕M∗3 ⊗ F∗0 ⊗
f3+2

⋀ F2 ⊕⋯] = R ⊗ V−(−ωxp−1)

(w′(a3))∗∶R ⊗
f0
⋀ F1 → R ⊗ [

f0
⋀ F0 ⊕⋯] = R ⊗ V−(−ωz1)

(w′(a2))∗∶R ⊗
f1
⋀ F∗1 → R ⊗ [

r2
⋀ F∗2 ⊗

f0
⋀ F∗0 ⊕⋯] = R ⊗ V−(−ωx1)

Each of these matrices has its first “block” in common with one of the maps w(∗):
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● d3 appears in w(3) and (w′(1))∗,
● d2 appears in w(2) and (w′(2))∗,
● d1 appears in w(1) and (w′(3))∗,
● a3 appears in w(a3) and a1 ⊗ (w′(a2))∗,
● a2 appears in w(a2) and a−11 ⊗ (w′(a3))∗.

Our goal is to find invertible matrices Ai , i ∈ {zr−1, yq−1, xp−1, z1, x1}, containing each of the above
pairs of structuremaps. For example, writingV = V−(−ωxp−1), wewill constructAxp−1 ∈ AutR(V⊗R)
such that the following diagram commutes:

(3.1)

AutR(V ⊗ R) HomR(V ⊗ R, F0 ⊗ R)

Axp−1 w(1)

(w′(3))∗ d1

HomR(F1 ⊗ R,V ⊗ R) HomR(F1 ⊗ R, F0 ⊗ R)

project onto bottom F0

restrict to bottom F1

From this, the surjectivity of w(1) immediately follows. The approach for the other structure maps
is completely analogous.

The construction of these Ai is motivated by the action of G (the group corresponding to the
Dynkin type under consideration) on the representation V−(−ωi). We will construct the five auto-
morphisms Ai simultaneously. First we do this over a localization of R where F becomes split exact,
e.g. Rh for any h ∈ I f0(d1). Then we show that the constructed automorphisms agree over different
such localizations. Since grade I f0(d1) = 3 ≥ 2, we may find a regular sequence h1, h2 ∈ I f0(d1). The
preceding implies that each Ai is an automorphism over Rh1 ∩Rh2 = R, and this concludes the proof.

3.1. Thesplit exact case. Thestarting observation is that if we take eachAi to be the identity, then in
the bottom right of (3.1), we get the differentials of a split exact complex. Wewill refer to this complex
as the standard split complex Fssc. Note that it comes equipped with a splitting: the subdiagram of T
consisting of the center node and the right arm corresponds to sl(C) ⊂ g where C = Cr2 . Here ri is
the rank of the differential di , e.g. r2 = f2 − f3. Then F2 = F3 ⊕ C and F1 = F0 ⊕ C.
Moreover, the top right and bottom left of (3.1) give structure maps for Fssc and F∗ssc as well.

This is the content of [12, Theorem 4.5]. In other words, taking each Ai to be the identity on the
respective representation V−(−ωi) suffices for Fssc with the easy choice of higher structure maps
wssc∶ R̂gen( f )→ R and w′ssc∶ R̂gen( f ′)→ R from [12, Theorem 4.5]. For instance, we have

(3.2)

IdV−(−ωxp−1) w(1) for Fssc from wssc

(w′(3))∗ for F∗ssc from w′ssc d1 of Fssc

and analogous diagrams for the other four pairs.
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Now suppose F is a split exact complex over some ring R. Then one can find an isomorphism
Fssc ⊗ R ≅ F, which amounts to picking appropriate R-valued points g1, g2 of GL(F1) and GL(F2):

0 F3 ⊗ R F2 ⊗ R F1 ⊗ R F0 ⊗ R

0 F3 ⊗ R F2 ⊗ R F1 ⊗ R F0 ⊗ R

g2 g1

d3 d2 d1

Explicitly g1, g2 are such that

g−11 =
F1

[ ]F0 d1
C γ

g2 =
F3 C

[ ]F2 d3 β

with the property that the composite F1
γ
Ð→ C

β
Ð→ F2 splits the differential d2.

We act on (3.2) by g1 and g2, as well as on the mapswssc∶ R̂gen( f )→ R andw′ssc∶ R̂gen( f ′)→ R from
[12, Theorem 4.5]. Note that the actions of GL(F j) for different j commute, so the order does not
matter. Afterwards, (3.2) for example becomes

(3.3)
element of AutR(V−(−ωxp−1)⊗ R) w(1) for F from w0

(w′(3))∗ for F∗ from w′0 d1 of F

whilewssc andw′ssc becomemapsw0 andw′0 respectively, which give the structure maps in the above
diagram (and the four other analogous diagrams).

Now suppose that we have already chosen higher structure maps for F and F∗, corresponding to
homomorphisms w∶ R̂gen( f )→ R and w′∶ R̂gen( f ′)→ R. There is a way to relate w0 and w′0 to w and
w′, given by [12, Theorem 3.1], as follows. Let L denote the negative part of g in the z1-grading and
let L′ denote the positive part of g in the x1-grading. These are the defect Lie algebras for F and F∗.
There exists a unique element Z− ∈ L ⊗ R such that precomposing w0 by the action of expZ− on
R⊗ R̂gen( f ) results inw. So if we precompose by expZ− in (3.3), we adjust the structure maps for F
to the desired ones. Note that this action not affect the structure maps for F∗, since for those maps
the domain was already restricted to the bottom z1-graded piece.

Similarly, there exists a unique element X+ ∈ L′ ⊗ R such that acting on w′0 by expX+ yields w′.
Thus postcomposing (3.3) by expX+ adjusts the structure maps for F∗ to the desired ones, without
affecting the structure maps for F. After these adjustments, the diagram (3.3) becomes

(3.4)
Axp−1 w(1) for F from w

(w′(3))∗ for F∗ from w′ d1 of F

where Axp−1 is our desired element of AutR(V−(−ωxp−1)⊗ R), and similarly for the other Ai .
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Let us write

αi ∶G → AutV−(−ωi)
σi ∶GL(F1)→ AutV−(−ωi)
ρi ∶GL(F2)→ AutV−(−ωi)

for the actions of G, GL(F1), and GL(F2) on the representation V−(−ωi). With this notation, we
can thus summarize the construction of each Ai as follows:

(3.5) Ai = αi(expX+)ρi(g2)σi(g−11 )αi(expZ−).
By construction, Ai is evidently invertible.

3.2. Independence of choice of splitting. Given a split exact complex F and choices of higher
structure maps for F and F∗, to construct the matrices Ai in the preceding subsection, we relied
on the choice of a particular isomorphism Fssc ⊗ R ≅ F. This was the only step that required a
choice; the elements Z−, X+ were uniquely determined afterwards.
We now show that the automorphisms obtained in the end are actually insensitive to this choice.

In the following we will often abuse notation and just write e.g. F j when we mean F j ⊗ R.

Lemma 3.2. Suppose that we pick a different isomorphism Fssc ⊗ R ≅ F, or equivalently, a different
splitting F1

γ′
Ð→ C

β′
Ð→ F2. Then there exist θ ∈ GL(C), η1 ∈ Hom(F0,C), and η2 ∈ Hom(C , F3) such

that
γ′ = θγ + η1d1, β′ = βθ−1 + d3η2.

For the corresponding g′1 , g′2, we can write this as

g′−11 = θ(1 + θ−1η1)g−11 , g′2 = g2(1 + η2θ)θ−1

recalling that F1 = F0 ⊕ C and F2 = F3 ⊕ C.

Proof. Both γ, γ′must map ker d1 isomorphically onto C, so there exists an element θ ∈ GL(C) such
that γ′ = θγ restricted to ker d1. The difference γ′ − θγ must then factor through d1. This gives the
first expression.

One similarly argues the existence of θ′ ∈ GL(C) such that β′ = βθ′ modulo ker d2 ⊂ F2. Note
that if s∶ F1 → F2 is a splitting, then

ker d1 ↪ F1
sÐ→ F2↠ F2/(ker d2)

must be inverse to the map induced by d2. In particular, βγ and β′γ′ must agree as maps (ker d1)→
F2/(ker d2), which means θ′ = θ−1. The expression for β′ thus follows. □

Note that 1 + θ−1η1 ∈ SL(F1) ⊂ G. It can be written as exp(θ−1η1), viewing θ−1η1 ∈ F∗0 ⊗ C = g1,0.
Similarly 1 + η2θ = exp(η2θ) viewing η2θ ∈ C∗ ⊗ F3 = g0,−1.
If we go through the construction of §3.1 with g′1 , g′2, we get

A′i = αi(expX′+)ρi(g′2)σi(g′−11 )αi(expZ′−).
Expanding this using the above observations, we have

A′i = αi(expX′+)ρi(g2)αi(exp(η2θ))ρi(θ−1)σi(θ)αi(exp(θ−1η1))σi(g−11 )αi(expZ′−).
Now we use:

Lemma 3.3. The map GL(C)→ GL(F1)
σiÐ→ Aut(Vi) agrees with GL(C)→ GL(F2)

ρ iÐ→ Aut(Vi).
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Proof. The statement is certainly true for SL(C) because both actions can be seen through the in-
clusion SL(C) ⊂ G. Note that in both cases, GL(C) acts on each (x1, z1)-bigraded piece of the
representation, and moreover if scalars c ∈ GL(C) act by cλ on the part in bidegree (m, n), then
they act by cλ+u+v on the part in bidegree (m + u, n + v).

Thus it is sufficient to check that the action of scalars c ∈ GL(C) agree on a single bigraded
component, such as the bottom one, and this is straightforward to verify from the explicit decom-
positions. We do i = xp−1 as an example. The representation of GL(F1) in bottom z1-degree is
F1 = C ⊕ F3, where F3 resides in lower x1-degree. So c ∈ GL(C) ⊂ GL(F1) acts by c0 on the bottom
bigraded component. Likewise, the bottom x1-graded piece is F0, a trivial representation ofGL(F2),
so c ∈ GL(C) ⊂ GL(F2) also acts by c0. □

Hence ρi(θ−1) and σi(θ) cancel, and we are left with
A′i = αi(expX′+)ρi(g2)αi(exp(η2θ))αi(exp(θ−1η1))σi(g−11 )αi(expZ′−).

Elements of g1,0 and g0,−1 commute because g1,−1 = 0, so we can interchange the middle two terms.
Note that

θ−1η1 ∈ g1,0 = F∗0 ⊗ C

⊂ g1,∗ = F∗0 ⊗
f3+1

⋀ F2 ⊗
f3
⋀ F∗3

Applying g2 to θ−1η1 gives an element X1 ∈ g1,∗ such that
αi(expX1)ρi(g2) = ρi(g2)αi(exp(θ−1η1)).

Similarly, by applying g1 to η2θ, we get Z1 ∈ g∗,−1 such that
σi(g−11 )αi(expZ1) = αi(exp(η2θ))σi(g−11 ),

allowing us to write
A′i = αi(expX′+)αi(expX1)ρi(g2)σi(g−11 )αi(expZ1)αi(expZ′−).

Baker-Campbell-Hausdorff yields elements X̃+ ∈ L′ and Z̃− ∈ L such that

exp X̃+ = (expX′+)(expX1), exp Z̃− = (expZ1)(expZ′−),
and so

A′i = αi(exp X̃+)ρi(g2)σi(g−11 )αi(exp Z̃−).
However, compare this to

Ai = αi(expX+)ρi(g2)σi(g−11 )αi(expZ−)
and recall that X+, Z− were uniquely determined so that this expression would recover the chosen
structure maps for F and F∗ in (3.3). Thus X+ = X̃+ and Z− = Z̃−, from which we conclude that
Ai = A′i .
Having established that the matrices Ai are independent of the choice of splitting, Theorem 3.1

readily follows.

Proof of Theorem 3.1. Let F be a resolution over R of Dynkin format f = ( f0, f1, f2, f3), and suppose
thatF∗ is also acyclic. Fix higher structuremaps forF andF∗, i.e. maps R̂gen( f )→ R and R̂gen( f ′)→
R specializing the generic resolutions to F and F∗ respectively.
Writing d1 for the first differential of F, let h1, h2 ∈ I f0(d1) be a regular sequence. Then F ⊗ Rh1

and F⊗ Rh2 are split exact, so using the construction of §3.1, we obtain matrices Ai over Rh1 and A′i
over Rh2 . Working over the common localization Rh1h2 , the results of this section imply that Ai = A′i .
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In particular, this means that the entries of each Ai are elements of Rh1 ∩ Rh2 = R. The same goes
for (detAi)−1. Thus the matrices Ai are invertible over R, from which the surjectivity of the stated
structure maps follows immediately. □

3.3. First applications. The major applications of Theorem 3.1 will be explored in later sections.
We conclude this section with a easy but surprising consequence in the graded setting: the theorem
gives a restriction on graded Betti numbers. Let k be a field of characteristic zero, R = k[x0, . . . , xm],
andM a graded Cohen-Macaulay R-module. Suppose the graded minimal free resolution ofM has
the form

0→
b3
⊕
j=1

R(−s3 j)→
b2
⊕
j=1

R(−s2 j)→
b1
⊕
j=1

R(−s1 j)→
b0
⊕
j=1

R(−s0 j)→ M → 0.

Corollary 3.4. In the setup above, if (b0, b1, b2, b3) is Dynkin, then the graded module

R ⊗ V−(−ωx1) =
f2
⋀ F2 ⊗ [

r2
⋀ F∗1 ⊗

f3
⋀ F∗3 ⊕⋯]

must have a generator in degree zero.

Proof. For a graded resolution, it is possible to pick w∶ R̂gen → C⊗ R such that the higher structure
maps are all homogeneous of degree zero—this follows from the fact that the structure maps pi
which determine w are computed by recursive lifting. Having done this, Theorem 3.1 implies that
w(a2) is surjective, i.e. nonzero mod m = (x1, . . . , xm). Hence one entry of the matrix must have
degree exactly zero. □

One case of particular interest is F0 = R, soM = R/I. As a1 is an isomorphism, the above equiva-
lently says that

R ⊗ V−(−ωx1) = F1 ⊕ F∗3 ⊗
3
⋀ F1 ⊕⋯,

the domain ofw(1), has a generator in degree zero. Each graded component is a∏GL(Fi)-subrepresentation
of F1 ⊗ g

⊗ j
1 for some j ≥ 0, where g1 = F∗3 ⊗⋀2 F1.

Example 3.5. If R/I is Cohen-Macaulay and (1, b1, b2, b3) is Dynkin, then 2min(s1 j) < max(s3 j).
Since the module F1 is generated in positive degrees, it follows that F∗3 ⊗⋀2 F1 must have a generator
in negative degree in order for R ⊗ V−(−ωx1) to have a generator in degree zero.

From the perspective of linkage, this example can also be obtained as a corollary of a result we
will establish in a forthcoming paper, which is that every perfect ideal of grade 3 with Dynkin Betti
numbers is licci. The inequality 2min(s1 j) <max(s3 j) then follows from [10, Corollary 5.13].

Example 3.6. If R/I is Cohen-Macaulay and (1, b1, b2, b3) is Dynkin, then at least one s1 j is even or
at least one s3 j is odd. If this were not the case, F1 would be generated in odd degree and F∗3 ⊗⋀2 F1
would be generated in even degree. Consequently R ⊗ V−(−ωx1) would have all generators in odd
degree, thus none in degree zero.

4. Classification of perfect ideals with Dynkin Betti numbers

We will now apply Theorem 3.1 to classify perfect ideals I of grade 3 in a local ring (R,m, k) of
equicharacteristic zero3, with the assumption that R/I has Betti numbers in the Dynkin range. If R

3As discussed in §2.2.6, although R̂gen was originally constructed over C in [19] and [18], higher structure maps can
be computed for any resolution over a Q-algebra. A local Q-algebra is equivalently a local ring of equicharacteristic
zero.
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is regular, this is equivalent to R/I being Cohen-Macaulay, with one of the following conditions on
the type t and deviation d:

● t = 1,
● d = 1,
● t = 2 and d ≤ 4, or
● t ≤ 4 and d = 2.

The first two cases are already well-understood. The novel results come from the last two—these
correspond to Dynkin types En.
In order to do this, we will make use of an important connection between R̂gen and the homo-

geneous space G/P+x1 . We refer to §2.3 for background regarding the following setup. Throughout
this whole section, we fix a Dynkin format (1, f1, f2, f3) = (1, 3 + d , 2 + d + t, t). Let T2,d+1,t+1 be the
corresponding diagram

x1 u y1 ⋯ yd

z1

⋮

zt

Let V = V(ωx1), and let v ∈ V be a highest weight vector. Write [v] ∈ P(V) for its span.
We now recall the relationship between R̂gen and G/P+x1 ⊂ P(V) given in [12]. Note that this can

also be inferred from the explicit decompositions of R̂gen into representations of g given in [18].

Theorem 4.1. The subring generated by the representationW(d1) = V∗ inside of R̂gen is the homoge-
neous coordinate ring (SymV∗)/IPlücker of G/P+x1 in its Plücker embedding.

Let I ⊂ R be a perfect ideal of grade 3 such that R/I is resolved by F of the format (1, f1, f2, f3).
We do not require that F be minimal. Let w∶ R̂gen → F be a map specializing the generic resolution
to F. From Theorem 3.1 we know that w(1) is surjective, equivalently nonzero mod m, and hence
Theorem 4.1 implies that we have a map SpecR → G/P+x1 . In particular, by looking atw(1)⊗ k, where
k = R/m is the residue field, we get a k-point of G/P+x1 . Let P−z1 ⊂ G correspond to the non-positive
part of g in the z1-grading. The k-points of G/P+x1 are a disjoint union of P−z1-orbits, each of which is
a union of B−-orbits (i.e. Schubert cells). The next result says that the orbit containing w(1) ⊗ k is
well-defined and preserved under local specialization.

Proposition 4.2. Suppose that F has Dynkin format and resolves R/I for a perfect ideal I ⊂ R. Let
w∶ R̂gen → R specialize the generic resolution to F. The P−z1-orbit containing the k-point determined by
w(1) ⊗ k depends only on the ideal I ⊂ R and not on the choice of resolution F or map w∶ R̂gen → R
specializing the generic resolution to F.

If I′ ⊂ R′ is a perfect ideal in regular local ring (R′,m′, k′) of equicharacteristic zero and R
φ
Ð→ R′ is

a local homomorphism such that φ(I)R′ = I′, then the orbits determined by I and I′ are the same.
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Proof. For the first point, letF′ be a different resolution of format (1, f1, f2, f3) for R/I, andw′∶ R̂gen →
R a map specializing the generic resolution to F′. We vieww ,w′ as maps R⊗ R̂gen → R. By precom-
posingw with the action of an appropriate element g ∈∏GL(Fi) on R⊗R̂gen, we can arrange so that
wg∶R ⊗ R̂gen → R specializes the generic resolution to F′. Since both w′ and wg have this property,
it follows from [12, Theorem 3.1] that there is an element X ∈ L⊗ R, where L is the negative part of
g in the z1-grading, such that wg expX = w′.
The action of∏GL(Fi) on V , up to a scalar, can be seen from the part of G corresponding to the

middle z1-graded piece of g, which is sl(F1) × sl(F3) × C. For more details we refer the reader to
§2 or [12, §2.3]. Evidently X ∈ L is in the negative z1-graded part. We conclude that both of these
actions preserve the P−z1 orbit that contains w(1) ⊗ k.

For the other point of the proposition, simply note that F⊗ R′ is a resolution of R′/I′, and
(w(1) ⊗R R′)⊗R′ k′ = (w(1) ⊗R k)⊗k k′

because we assumed φ to be a local homomorphism, so it induces an inclusion of residue fields
k ↪ k′. □

Let W denote the Weyl group of G and, for j ∈ T2,d+1,t+1, WPj ⊂ W the subgroup generated by
all simple reflections {si}i≠ j. The Schubert cells of G/P+x1 are indexed by the torus-fixed points. In
the Plücker embedding G/P+x1 ↪ P(V), these are exactly the extremal weight lines, which are in
correspondence withW/WPx1 .
The P−z1-orbits inG/P+x1 , each of which is a union of Schubert cells, are indexed by the double cosets

WPz1 /W/WPx1 . If σ ∈W is the minimal length representative of such a double coset, then σ ⋅v ∈ V is
a highest weight vector for an extremal representation of sl(F3)×sl(F1) inside ofV . In this manner,
the P−z1-orbits correspond to these extremal representations, and we obtain the following algebraic
translation of the above proposition, in the language of higher structure maps.
Proposition 4.3. Suppose that F has Dynkin format and resolves R/I for a perfect ideal I ⊂ R. Let
w∶ R̂gen → R specialize the generic resolution to F. In the z1-graded decomposition

R ⊗ V−(−ωx1) = F1 ⊕ F∗3 ⊗
3
⋀ F1 ⊕⋯

there is a lowest irreducible gl(F3) × gl(F1)-representation to which the restriction of w(1) is nonzero
modm. This representation depends only on I ⊂ R and is necessarily extremal.

To summarize, so farwehave demonstrated howaperfect ideal determines an element ofWPz1 /W/WPx1
which can be used to classify the ideal. Next we will show that every double coset is realizable in
this manner, and exhibit a generic perfect ideal for each double coset.
Theorem 4.4. Let w = sz1 susx1 ∈ W and let Xw ⊂ G/P+x1 be the codimension 3 Schubert variety that
is the closure of B−w ⋅ [v]. Let σ ∈ W be a representative of a double coset in WPz1 /W/WPx1 and let
Sσ ∶= OG/P+x1 ,σ ⋅[v] be the local ring of G/P

+
x1 at σ ⋅ [v]; it is isomorphic to a polynomial ring over Q

localized at its ideal of variables. Let Iσ be the ideal of local defining equations of Xw at that point. The
ideal Iσ is the unit ideal if [σ] = [e] where e ∈W is the identity. Otherwise it is a perfect ideal of grade
3 in Sσ . It has the following properties:

(1) If w∶ R̂gen → Sσ specializes the generic resolution to a resolution of Sσ/Iσ , the point of G/P+x1
determined by w(1) ⊗Q is in P−z1σ ⋅ [v], the P−z1-orbit corresponding to the double coset [σ].

(2) If R is a local ring of equicharacteristic zero, w∶ R̂gen → R specializes the generic resolution to a
resolution of R/I for a perfect ideal I, and w(1)⊗ k is in the same P−z1-orbit as σ ⋅ [v], then there
exists a local homomorphism φ∶ Sσ → R such that I = φ(Iσ)R.
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Proof. Note that Xw is the union of all P−z1-orbits aside from the big open orbit P−z1 ⋅ [v]. So Iσ is the
unit ideal when [σ] = [e]. If [σ] ≠ [e] then σ ⋅ [v] ∈ Xw and it is well-known that Schubert varieties
are Cohen-Macaulay [14], so Iσ ⊂ Sσ is a perfect ideal.

To prove (1), in viewof Proposition 4.2, it suffices to construct one suchw and verify the statement.
We will produce this w using the action of G on R̂gen. We begin with the map wssc∶ R̂gen → C from
[12, Theorem 4.5] that was also used in §3, and observe that its restriction w(1)ssc ∶V∗ → C yields a
highest weight vector v ∈ V . Let n−x1 be the negative part of g in the x1-grading. The affine patch
B− ⋅ [v] ⊂ G/P+x1 (the open Schubert cell) is the orbit of [v] under the exponential action of n−x1 , thus
it can be identified with Spec Sym(n−x1)∗.

Next we produce a map R̂gen → Sym(n−x1)∗ by precomposing

R̂gen
wsscÐÐ→ C→ Sym(n−x1)

∗

with the action of expX on R̂gen ⊗ Sym(n−x1)∗, where
X ∈ n−x1 ⊗ (n

−
x1)
∗ ⊂ n−x1 ⊗ Sym(n−x1)

∗

is the “generic element” of n−x1 , i.e. X is adjoint to the identity on n−x1 . This construction is akin to the
one used in the proof of [12, Theorem 5.1] for “generic higher structure maps.”

Finally we precompose this map by the action of σ−1 ∈ W (or more accurately, a representative
of σ−1 in G) on R̂gen. Let w∶ R̂gen → Sym(n−x1)∗ be the result. By construction, w(1)∶V∗ → Sym(n−x1)∗
is none other than a parametrization of the open patch σ exp(n−x1) ⋅ [v], where σ ⋅ [v] is the origin,
corresponding to the ideal of variables in Sym(n−x1)∗. In particular, Sσ is the localization of this
polynomial ring at its ideal of variables. The ideal Iσ is generated by the Plücker coordinates coming
from the bottom z1-graded component w(1)0 of w(1).
The map w specializes the generic resolution to a complex over Sσ with differentials w(1)0 , w(2)0 ,

and w(3)0 . This complex is none other than the resolution of Sσ/Iσ given inTheorem 2.8.
Point (2) follows readily from the discussion before Proposition 4.2. If w∶ R̂gen → R is such a

map, and p is the k-point of G/P+x1 determined by w(1) ⊗ k, then the ideal of Xw ⊂ G/P+x1 at the
point p specializes to the ideal I. The important point is that the action of P−z1 on G/P preserves the
Schubert variety Xw . Consequently, since p and σ ⋅ [v] are related by an element of P−z1 , the local
defining equations of Xw at these two points are equivalent up to a change of coordinates. Thus Iσ
specializes to I as well. □

Wewill not explicitly describe the ideals Iσ in this paper; they can get very complicated and there
are simply too many of them for E7 and E8. The paper [13] outlines how to produce free resolutions
of Sσ/Iσ for σ = w0 the longest element, and that construction is easily adapted to other σ .

However, we will at least tie back our results to the discussion in the introduction §1 and describe
the situation for Dynkin types Dn and E6. Before doing so, we note that even without explicitly
understanding the ideals Iσ , we obtain the following classification result as a corollary of the above.

Theorem 4.5. Fix a Dynkin format (1, f1, f2, f3) and the corresponding setup as in the beginning of
this section. Every element of WPz1 /W/WPx1 − [e] describes a non-empty family of perfect ideals of
grade 3 with Betti numbers (1, b1, b2, b3), where bi ≤ fi for all i. These families are disjoint, and this is
the finest possible classification that is preserved under local specialization.

Proof. If I ⊂ R is perfect of grade 3, the condition that bi ≤ fi is equivalent to saying that R/I admits
a (not necessarily minimal) resolution of format (1, f1, f2, f3), and so its classification comes from
Proposition 4.2. The non-emptiness of each family comes fromTheorem 4.4 point (1). Disjointness
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comes from Proposition 4.2, as does the fact that this classification is preserved under local special-
ization. The existence of a generic example for each family, Theorem 4.4 point (2), shows that it is
the finest classification with this property. □

Now we revisit the types Dn and E6, starting with the two families of Dn formats.

Example 4.6. Consider the format (1, n, n, 1) where n ≥ 3. The corresponding diagram is T2,n−2,2 =
Dn, and the representation V is a half-spinor representation. The z1-graded decomposition of V∗
into gl(F3) × gl(F1)-representations is

V∗ = (F1)⊕ (F∗3 ⊗
3
⋀ F1)⊕ (S2F∗3 ⊗

5
⋀ F1)⊕⋯⊕ (S⌊ n−12 ⌋F

∗
3 ⊗

2⌊ n−12 ⌋+1

⋀ F1)

Every representation appearing is extremal; they correspond to the elements ofWPz1 /W/WPx1 . Aside
from the lowest representation F1, which corresponds to [e] ∈ WPz1 /W/WPx1 , there are ⌊

n−1
2 ⌋ ex-

tremal representations; each one of these is a possible location for the lowest appearance of a unit
in the structure map w(1).
If I ⊂ R is a perfect ideal of grade 3 such that R/I has Betti numbers (1, b1, b2, b3) with bi ≤ fi ,

then necessarily b3 = 1 and b1 = b2 ≤ n. Gorenstein ideals of grade 3 are minimally generated by an
odd number of elements [16]. Moreover, for each odd b1 with 3 ≤ b1 ≤ n, the generic example of
such an ideal is given by [3], confirmingTheorem 4.5 for this format.

Example 4.7. Consider the format (1, 4, n, n − 3) where n ≥ 4. The corresponding diagram is
T2,2,n−2 = Dn, and the representation V is again a half-spinor representation. However, the node
z1 is different from the preceding example, and the decomposition of V∗ into gl(F3) × gl(F1)-
representations is

V∗ = (F1)⊕ (F∗3 ⊗
3
⋀ F1)⊕ (

2
⋀ F∗3 ⊗ S2,13F1)⊕⋯⊕ (

n−3
⋀ F∗3 ⊗ S(a+1)b ,a(4−b)F1).

Here a = ⌊ n−32 ⌋, and b = 2 + (−1)n. Every representation appearing is extremal. Again excluding the
lowest representation F1, we see n− 3 possible representations for the lowest appearance of a unit in
w(1). These correspond to the Betti numbers (1, 3, 3, 1) and (1, 4, b2, b2 − 3) where 5 ≤ b2 ≤ n. There
is a generic perfect ideal with each of these Betti numbers; see [3] and [1].

We refer the reader to [9] for a detailed discussion of higher structure maps for the preceding two
formats, including methods for computing w(i)j explicitly via lifting. Next we turn our attention to
the E6 format.

Example 4.8. Consider the format (1, 5, 6, 2). The corresponding diagram is T2,3,3 = E6, and the rep-
resentationV is the adjoint. The z1-graded decomposition ofV∗ into gl(F3)×gl(F1)-representations
is

V∗ = (F1)⊕ (F∗3 ⊗
3
⋀ F1)⊕

⎡⎢⎢⎢⎢⎢⎣

(S2F∗3 ⊗⋀5 F1)
⊕(⋀2 F∗3 ⊗ S2,13F1)
⊕(⋀2 F∗3 ⊗⋀5 F1)

⎤⎥⎥⎥⎥⎥⎦
⊕ (S2,1F∗3 ⊗ S22 ,13F1)⊕ (S2,2F∗3 ⊗ S24 ,1F1)

All representations, except for the ⋀2 F∗3 ⊗⋀5 F1 appearing in the middle, are extremal.
If R/I has Betti numbers (1, b1, b2, b3)with bi ≤ fi , then the Betti numbers can be one of (1, 3, 3, 1),
(1, 5, 5, 1), (1, 4, 5, 2), or (1, 5, 6, 2). The first three have already been discussed in the preceding
two examples; in particular there is a generic example for each one. This leaves two elements of
WPz1 /W/WPx1 for the Betti numbers (1, 5, 6, 2), namely those corresponding to the last two repre-
sentations S2,1F∗3 ⊗ S22 ,13F1 and S2,2F∗3 ⊗ S24 ,1F1.
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If one explicitly computes the ideals Iσ for these two cases, the two can be distinguished by
whether the multiplication on Tor1(Sσ/Iσ ,Q) is nonzero. For the former example, the multipli-
cation is nonzero, and the ideal is described in [1, Theorem 4.4]. This multiplication is zero for the
latter, and that Iσ is the ideal J(t) in [6]. Its relationship to E6 is discussed at length in that pa-
per as well as in [13, §3.2]. Since the property of this Tor algebra multiplication being (non)zero is
preserved under local specialization as discussed in §1, it can be used to distinguish between the
corresponding two families of (1, 5, 6, 2) perfect ideals.

Thedouble cosetsWPz1 /W/WPx1 can be computed algorithmically, andwe thankWitoldKraśkiewicz
for providing us with Python code that does so. By looking at the cardinality of this set, a simple
counting argument can be used to deduce the number of families of perfect ideals with Betti num-
bers corresponding to types E7 and E8. We have already witnessed the first point of the following
theorem in Example 4.8.

Theorem 4.9. In the sense of Theorem 4.5, there are:
● 2 families of perfect ideals with Betti numbers (1, 5, 6, 2),
● 7 families of perfect ideals with Betti numbers (1, 6, 7, 2),
● 11 families of perfect ideals with Betti numbers (1, 5, 7, 3),
● 49 families of perfect ideals with Betti numbers (1, 7, 8, 2),
● 90 families of perfect ideals with Betti numbers (1, 5, 8, 4).

Proof. In Table 2, we have summarized the cardinality ofWPz1 /W/WPx1 for various Dynkin formats
(1, 3 + d , 2 + d + t, t); call this quantity #(d , t).

Table 2. Cardinality #(d , t) ofWPz1 /W/WPx1 for T2,d+1,t+1 associated to Dynkin for-
mats (1, 3 + d , 2 + d + t, t)

#(d , t) t = 1 t = 2 t = 3 t = 4 t = 5 ⋯
d = 0 2 2 2 2 2 ⋯
d = 1 2 3 4 5 6 ⋯
d = 2 3 6 18 109 –
d = 3 3 13 – – –
d = 4 4 63 – – –
d = 5 4 – – – –
⋮ ⋮

Since #(d , t) − 1 records the number of families of perfect ideals with Betti numbers at most
(1, 3 + d , 2 + d + t, t), we have that the number of families with Betti numbers exactly the given
format is

#(d , t) − #(d − 1, t) − #(d , t − 1) + #(d − 1, t − 1).
The counts in the theorem follow easily. □

We close this section by mentioning a non-local form of Theorem 4.4, to address the “genericity
conjecture” that has appeared in previous work on the subject, e.g. [17, Questions 4.9].

In [13], the focus was on σ = w0 ∈ W , the longest element. The reason for focusing on w0 was a
matter of perspective, rather than any technical limitation. Rather than looking at the local defining
equations of Xw at any particular point, both that paper and its precursor [15] examined the ideal
of Yw ∶= Xw ∩ w0Ce inside of w0Ce , where Ce = B− ⋅ [v] is the big open Schubert cell and w0Ce is
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its opposite. This yields an ideal Jw0 ⊂ S ∶= Sym(n−x1)∗. The “origin” w0 ⋅ [v] of this open cell w0Ce

is a point in the lowest-dimensional P−z1-orbit of G/P+x1 . So by localizing at the ideal of variables, we
recover the ideal Iw0 ⊂ Sw0 .

Loosely speaking, the genericity conjecture says that a general choice of higher structure maps
for a perfect ideal with Dynkin Betti numbers will have a unit in the top coordinate of w(1). This
follows easily from Theorem 3.1, but it carries less information than Theorem 4.4. We present and
prove it mainly for the sake of closing the loop in this circle of ideas.

Theorem 4.10. Fix a Dynkin format (1, f1, f2, f3). If F is a resolution of R/I with the given format,
where I ⊂ R is a perfect ideal of grade 3 in a local ring of equicharacteristic zero, then there is a map
φ∶ S → R such that φ(Jw0)R = I.

Note that the polynomial ring Sym(n−x1)∗ is not localized, as we are considering the whole affine
patch w0Ce . Since Jw0 and I are both perfect ideals of grade 3, the resolution for S/Jw0 constructed
in [13] specializes to one for R/I via φ. This is the form in which the statement appears in [13,
Conjecture 2.6]. On the other hand, [17] states the genericity conjecture in terms of the “generic top
complex” for a split exact complex. These apparently different formulations are reconciled in [12,
Theorem 5.3].

Proof. Pick a map w∶ R̂gen → R specializing the generic resolution to F, and let w(1) denote its re-
striction toW(d1) = V∗ as usual.
Let λ be a highest weight vector ofV∗, i.e. dual tow0 ⋅v ∈ V . Note that ker(w(1)⊗k) is a hyperplane

in V∗ since w(1) ⊗ k ≠ 0. The linear span of the B−-orbit of λ is the entirety of V∗, thus a general
element g ∈ B− has the property that g ⋅ λ ∉ ker(w(1) ⊗ k).
Precomposing w(1) by such a g does not change the image of w(1)0 because the bottom z1-graded

component F1 ⊂ V∗ is preserved under the action of B−. Hence w(1)g determines a map SpecR →
G/Px1 landing in w0Ce , and the corresponding map S → R specializes Jw0 to I as desired. □

5. Next steps

The theory of R̂gen has been developed for arbitrary resolution formats ( f0, f1, f2, f3) of length 3,
not just those in the Dynkin range. Actually, the construction of Ai in the proof of Theorem 3.1
works fine without the Dynkin hypothesis, the caveat being that they must be thought of as maps

Ai ∶V(ωi)⊗ V−(−ωi)→ R.
Note that V−(−ωi) is the graded dual of V(ωi), which is different from the ordinary dual if the
representation is infinite. In particular, such a map Ai cannot be interpreted as an endomorphism
of V−(−ωi), and thus the crucial final step of the proof, in which we argue that the Ai are invertible,
does not make sense.

Phrasing it in this manner, one might be led to think that this is a technical shortcoming of the
proof. However, the theorem statement itself is not even true without the Dynkin hypothesis, as the
following example shows.

Example 5.1. Let I = (x , y, z)2 ⊂ R = C[x , y, z]. If we take R with the standard grading, then R/I
admits a graded minimal free resolution

F∶0→ R(−4)3 → R(−3)8 → R(−2)6 → R.

The format (1, 6, 8, 3) is not Dynkin, as it is associated to the affine type Ẽ7. The quotient R/I is
obviously Cohen-Macaulay, being zero-dimensional, so F∗ is acyclic. Thus the other assumption of
Theorem 3.1 is still satisfied.
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However, we know that there exists R̂gen → R resulting inw(1) being homogeneous of degree zero;
see for instance the discussion around Corollary 3.4. The module

R ⊗ V−(−ωx1) = F1 ⊕ F∗3 ⊗
3
⋀ F1 ⊕⋯

has all generators in degree 2, since F1 is generated in degree 2 and F∗3 ⊗⋀2 F1 is generated in degree
0. We conclude that the image of w(1) is I, so in particular w(1) is not surjective. This is because the
entries of w(1) are all quadrics by degree considerations, and the differential d1 is part of the matrix
w(1).

In a future paper, we will elucidate a connection between higher structure maps coming from
R̂gen and the theory of linkage. From that perspective, the surjectivity of w(1) is equivalent to the
ideal I being in the linkage class of a complete intersection (licci), andTheorem 3.1 will be recast as
the following:

Theorem 5.2. Let I be a grade 3 perfect ideal in a local Noetherian ring R of equicharacteristic zero.
Let d denote the deviation of I and t the minimal number of generators of Ext3(R/I, R). If

● d ≤ 4 and t ≤ 2, or
● d ≤ 2 and t ≤ 4,

then I is in the linkage class of a complete intersection.

On the other hand, the ideal (x , y, z)2 from the preceding example is not licci. Moreover, in [7]
it is shown that for all (1, f1, f2, f3) outside the Dynkin range, there exists a perfect ideal with those
Betti numbers that is not licci. Thus the Dynkin condition inTheorem 3.1 is essential.

Beyond the Dynkin range, it remains unclear how to use representation theory to characterize
non-licci perfect ideals. A concrete starting point would be to see whether one can produce some
well-known examples of non-licci perfect ideals with Betti numbers f = (1, 6, 8, 3) directly from the
representation theory of Ẽ7, which is the affine Kac-Moody Lie algebra involved in the construction
of R̂gen( f ). Two particularly simple examples of such perfect ideals are

● the ideal of 2 × 2 minors of a generic 2 × 4 matrix (the ideal of P1 × P3 ⊂ P7 in the Segre
embedding), and
● the ideal of 2 × 2 minors of a generic 3 × 3 symmetric matrix (the ideal of P2 ⊂ P5 in the
Veronese embedding).

Next we discuss a different avenue for future work. The behavior of perfect ideals of codimen-
sion c often parallels the behavior of Gorenstein ideals of codimension c + 1. Indeed, there are
various methods of producing the latter given an example of the former. From this perspective, af-
ter studying perfect ideals of codimension 3, a natural next step is to examine Gorenstein ideals of
codimension 4.

For a such an ideal I generated by n elements, and F a self-dual resolution of R/I, there is a ring
A(n)∞ and a map A(n)∞ → R which can be viewed as a collection of “higher structure maps” for
F. This construction is described in (need citation for Gorenstein codim 4). The Kac-Moody Lie
algebra associated to the diagram T3,n,2 acts on A(n)∞. In particular, when 6 ≤ n ≤ 8, this Lie
algebra is En. In analogy with Theorem 3.1, we conjecture that the higher structure maps, suitably
interpreted, are surjective for n ≤ 8. Assuming this, one can develop a similar classification as we
have done in §4.

However, for the proof of Theorem 3.1, it was necessary to have two rings R̂gen( f ) and R̂gen( f ′)
to assemble the matrices Ai . In a way, it would appear that the ring A(n)∞ only provides half of the
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picture needed to carry out this same program. For example, Kustin’s “higher order products” are
not visible in A(n)∞, and we expect to find them coming from another ring. We do not yet have
a systematic construction of this second set of structure maps in general, but for n = 6, they have
been explicitly computed via lifting (citation for Lorenzo’s paper with the explicit liftings).
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