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Abstract

We show that the complex absorbing potential (CAP) method for computing scattering reso-

nances applies to the case of exponentially decaying potentials. That means that the eigenvalues

of −∆ +V − iεx2, |V (x)| ≤ Ce−2γ|x| converge, as ε→ 0+, to the poles of the meromorphic contin-

uation of (−∆ + V − λ2)−1 uniformly on compact subsets of Reλ > 0, Imλ > −γ, arg λ > −π/8.
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1. INTRODUCTION

The complex absorbing potential (CAP) method has been used as a computational tool

for finding scattering resonances – see Riss–Meyer [1] and Seideman–Miller [2] for an early

treatment and Jagau et al [3] for some recent developments. For potentials V ∈ L∞comp the

method was justified by Zworski [4]. In [5] the author extended it to potentials which are

dilation analytic near infinity. In this paper we show that the CAP method is also valid for

potentials which are exponentially decaying. While the key component of [4] and [5] was

the method of complex scaling (see Hunziker [6], Sjöstrand–Zworski [7] for an account and

references), here we use complex scaling on the Fourier transform side following Nakamura

[8] and Kameoka–Nakamura [9].

Thus, we consider the Schrödinger operator P := −∆ + V acting on L2(Rn) whose

potential is exponentially decaying, this means that there exist C, γ > 0 such that

|V (x)| ≤ Ce−2γ|x|. (1.1)

Let RV (λ) = (P − λ2)−1 be the resolvent of P , initially defined for Imλ > 0. The expo-

nentially weighted resolvent
√
V RV (λ)

√
V can be meromorphically continued to the strip

Imλ > −γ, see Froese [10], Gannot [11] and a review in §2. Resonances of P are the poles

in this meromorphic continuation.

We now introduce a regularized operator,

Pε := −∆− iεx2 + V, ε > 0. (1.2)

(We write x2 := x2
1 + · · · + x2

n.) It is easy to see, with details reviewed in §4, that Pε is a

non-normal unbounded operator on L2(Rn) with a discrete spectrum. When V ≡ 0, Pε is

reduced to the rescaled Davies harmonic oscillator – see §3, whose spectrum is given by

√
ε e−iπ/4(2|α|+ n), α ∈ Nn

0 , |α| := α1 + · · ·+ αn,

where N0 denotes the set of nonnegative integers. Thus we will restrict our attentions to

arg z > −π/4. Suppose that

σ(Pε) ∩ C \ e−iπ/4[0,∞) = {λj(ε)2}∞j=1, −π/8 < arg λj(ε) < 7π/8. (1.3)

Zworski [4] proved that resonances can be defined as the limit points of {λj(ε)}∞j=1 as ε→ 0+,

in the case of compactly supported potentials. We generalize this result to the case of

exponentially decaying potentials. More precisely, we have
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Theorem 1. For any 0 < a′ < a < b and γ′ < γ such that the rectangle

Ω := (a′, a) + i(−γ′, b) b {λ ∈ C : −π/8 < arg λ < 7π/8}, (1.4)

we have, uniformly on Ω,

λj(ε)→ λj, ε→ 0+,

where λj are the resonances of P .

Notation. We use the following notation: f = O`(g)H means that ‖f‖H ≤ C`g where the

norm (or any seminorm) is in the space H, and the constant C` depends on `. When either `

or H are absent then the constant is universal or the estimate is scalar, respectively. When

G = O`(g) : H1 → H2 then the operator G : H1 → H2 has its norm bounded by C`g. Also

when no confusion is likely to result, we denote the operator f 7→ gf where g is a function

by g.

2. MEROMORPHIC CONTINUATION

In this section we will introduce a meromorphic continuation of the weighted resolvent
√
V RV (λ)

√
V from Imλ > 0 to the strip Imλ > −γ under the assumption (1.1). As in [10],

we define the resonances of P as the poles of this meromorphic continuation, with agreement

of multiplicities. For a detailed presentation, we refer to [10].

Let R0(λ) := (−∆− λ2)−1 be the free resolvent. For Imλ > 0, the resolvent equation

R0(λ)−RV (λ)−RV (λ)V R0(λ) = 0

implies

(I −
√
V RV (λ)

√
V )(I +

√
V R0(λ)

√
V ) = I.

Since R0(λ) = O(| Imλ|−1) : L2 → L2, then for Imλ large, I +
√
V R0(λ)

√
V is invertible by

a Neumann series argument and

I −
√
V RV (λ)

√
V = (I +

√
V R0(λ)

√
V )−1. (2.1)

We will show that the right side of (2.1) has a meromorphic continuation. For that, we recall

some bounds of the free resolvent with exponential weights, see [11] for details, to prove the

following lemma:
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Lemma 1. For any a > 0 and γ′ < γ,

λ 7→ (I +
√
V R0(λ)

√
V )−1, Reλ > a, Imλ > −γ′,

is a meromorphic family of operators on L2(Rn) with poles of finite rank.

Proof. Choose ϕ ∈ C∞(Rn) satisfying ϕ(x) = |x| for large |x|, it is well known that for each

c > 0, the weighted resolvent:

e−cϕR0(λ)e−cϕ : L2(Rn)→ L2(Rn)

extends analytically across Reλ > 0 to the strip Imλ > −c, see [11, §1] and references given

there. Moreover, Gannot [11, §1] proved that for any a, c, ε > 0 and α ∈ Nn, |α| ≤ 2 there

exists Cα = Cα(a, c, ε) such that

‖Dα(e−cϕR0(λ)e−cϕ)‖L2→L2 ≤ Cα|λ||α|−1, for Imλ > −c+ ε, Reλ > a. (2.2)

In particular, for Reλ > a and Imλ > −γ′,

λ 7→ e−γ
′ϕR0(λ)e−γ

′ϕ

is an analytic family of operators L2 → H2. Since lim|x|→∞
√
V (x)eγ

′ϕ(x) = 0 by (1.1), it is

easy to see that
√
V eγ

′ϕ : H2 → L2 is compact. Hence,

λ 7→
√
V R0(λ)

√
V =

√
V eγ

′ϕ(e−γ
′ϕR0(λ)e−γ

′ϕ)
√
V eγ

′ϕ

is an analytic family of compact operators L2 → L2 for Reλ > a, Imλ > −γ′. Recalling

that I +
√
V R0(λ)

√
V is invertible for Imλ � 1, then by the analytic Fredholm theory –

see [12, §C.4], λ 7→ (I +
√
V R0(λ)

√
V )−1 is a meromorphic family of operators in the same

range of λ.

From now on, we identify the resonances λj, in Ω given in (1.4), with the poles of

(I +
√
V R0(λ)

√
V )−1, with agreement of multiplicities. More precisely, the multiplicity

of resonance λ is given by

m(λ) :=
1

2πi
tr

∮
λ

(I +
√
V R0(ζ)

√
V )−1∂ζ(

√
V R0(ζ)

√
V ) dζ, (2.3)

where the integral is over a positively oriented circle enclosing λ and containing no poles

other than λ.
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3. RESOLVENT ESTIMATES FOR THE DAVIES HARMONIC OSCILLATOR

The operator Hc := −∆ + cx2, −π < arg c ≤ 0, was used by Davies [13] to illustrate

properties of non-normal differential operators. We recall some known facts about Hc and its

resolvent. As established in [13], Hc is an unbounded operator on L2(Rn) with the discrete

spectrum given by

σ(Hc) = {c1/2(n+ 2|α|) : α ∈ Nn
0}. (3.1)

In particular σ(H−iε) ⊂ e−iπ/4[0,∞), then one can study the resolvent of H−iε outside

e−iπ/4[0,∞). Unlike the normal operators, there does not exist any constant C such

that ‖(−∆ − iεx2 − z)−1‖L2→L2 ≤ C dist(z, e−iπ/4[0,∞))−1. Instead, according to Hitrik–

Sjöstrand–Viola [14], [4, §3] and references given there, for Ω b {z : −π/2 < arg z <

0} \ e−iπ/4[0,∞), there exists C = C(Ω) such that

1

C
eε
− 1

2 /C ≤ ‖(−∆− iεx2 − z)−1‖L2→L2 ≤ CeCε
− 1

2 , z ∈ Ω. (3.2)

In this section we will show how exponential weights dramatically improve the bound

(3.2) for (−∆− iεx2 − λ2)−1 in the rectangle Ω given by (1.4), which will be crucial in the

proof of Theorem 1.

First, note that −∆x− iεx2 = F−1(ξ2 + iε∆ξ)F , where F denotes the Fourier transform

Fu(ξ) = û(ξ) = (2π)−n/2
∫
e−ix·ξu(x) dx. Inspired by [8] and [9], we introduce a family of

spectral deformations in the Fourier space as follows.

For any fixed Ω given in (1.4), we choose ρ ∈ C∞([0,∞);R) with ρ ≡ 0 near 0 and

ρ(t) ≡ 1 for t� 1 such that

0 ≤ ρ′(t) < γ−1 tan
π

8
, ∀ t ≥ 0; Ω b {x+ iy : x > 0, y > −γρ(x)}, (3.3)

and define the map

ψ : Rn → Rn, ψ(ξ) = |ξ|−1ρ(|ξ|) ξ, (3.4)

then ψ is smooth with the Jacobian:

Dψ(ξ) = |ξ|−1ρ(|ξ|)I + (|ξ|−2ρ′(|ξ|)− |ξ|−3ρ(|ξ|)) ξ · ξT . (3.5)

Let A be an orthogonal matrix with n-th column |ξ|−1ξ, then we have

ATDψ(ξ)A = diag[ |ξ|−1ρ(|ξ|), · · · , |ξ|−1ρ(|ξ|), ρ′(|ξ|) ]. (3.6)
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For θ ∈ R, we consider a family of deformations:

φθ(ξ) = ξ + θψ(ξ), (3.7)

and the corresponding unitary operators Uθ, θ ∈ R defined by

Uθu(ξ) := (detDφθ(ξ))
1
2u(φθ(ξ)). (3.8)

Using (3.6), we can compute detDφθ(ξ) explicitly, i.e.

Jθ(ξ) ≡ detDφθ(ξ) = det(I + θDψ(ξ)) = (1 + θρ′(|ξ|) ) (1 + θ|ξ|−1ρ(|ξ|) )n−1, (3.9)

then by (3.3), Uθ is invertible as detDφθ(ξ) 6= 0 for θ ∈ R, |θ| < γ, the inverse is given by

U−1
θ v(ξ) = (detDφθ(φ

−1
θ (ξ)))−

1
2v(φ−1

θ (ξ)). (3.10)

Now we consider the deformed operators of ξ2 + iε∆ξ:

Qε,θ := Uθ(ξ
2 + iε∆ξ)U

−1
θ

= φθ(ξ)
2 − iεJθ(ξ)−

1
2DξlJ

lj(ξ)Jθ(ξ)J
kj(ξ)DξkJθ(ξ)

− 1
2

(3.11)

where Dξk = −i∂ξk , Jθ(ξ) = detDφθ(ξ), J
lj(ξ) = [Dφθ(ξ)

−1]jl. To extend Qε,θ to θ ∈ C, we

define

Dγ := {θ ∈ C : |Re θ|+ | Im θ| < γ}. (3.12)

In view of (3.3) and (3.9), Dφ−1
θ and detDφθ extend analytically to θ ∈ Dγ. Therefore, we

obtain that Qε,θ, given by the second equation in (3.11), extends analytically to θ ∈ Dγ.

Then we introduce some preliminary results about the spectrum of Qε,θ :

Proposition 1. There exists constant ε0 = ε0(Ω, γ) such that for all 0 < ε < ε0 and θ ∈ Dγ,

σ(Qε,θ) ∩ {z ∈ C : |z| > 1, π/2 < arg z < π} = ∅.

Proof. We note that for θ ∈ Dγ, by (3.3),

1− tan
π

8
< 1− |θ||ρ′(t)| ≤ |1 + θρ′(t)| ≤ 1 + |θ||ρ′(t)| < 1 + tan

π

8
, ∀ t ≥ 0.

Thus, (3.9) implies that C−1 < |Jθ(ξ)| < C for some constant C > 0. Since

[Dφθ(ξ)]jl =

(
1 + θ

ρ(|ξ|)
|ξ|

)
δjl +

θ|ξ|ρ′(|ξ|)− θρ(|ξ|)
|ξ|3

ξjξl
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by (3.5), and ρ′ ∈ C∞c ((0,∞)), together with (3.9), we conclude that

Jθ, J
−1
θ , J lj ∈ C∞b (Rn), 1 ≤ j, l ≤ n. (3.13)

Here C∞b (Rn) := {u ∈ C∞(Rn) : |∂αu| ≤ Cα for all α ∈ Nn
0}. Hence we have

Qε,θ = φθ(ξ)
2 − iεJkj(ξ)J lj(ξ)DξkDξl + εaj(ξ)Dξj + εb(ξ), (3.14)

where aj, b ∈ C∞b (Rn). Let h =
√
ε, then Qε,θ = qθ(ξ, hDξ;h) is a semiclassical differential

operator – see Zworski [15, §4], with the symbol

qθ(ξ, ξ
∗;h) = φθ(ξ)

2 − i(Dφθ(ξ)−2ξ∗) · ξ∗ + haj(ξ)ξ
∗
j + h2b(ξ), (3.15)

where (ξ, ξ∗) are coordinates of T∗Rn, Dφθ(ξ)
−2 = (Dφθ(ξ)

−1)T (Dφθ(ξ)
−1) since Dφθ(ξ) is a

symmetric matrix. Choose m(ξ, ξ∗) = 1+ ξ2 + ξ∗2 as an order function, we recall the symbol

class S(m) from [15, §4.4],

S(m) := {a ∈ C∞ : |∂αa| ≤ Cαm for ∀α ∈ N2n
0 }. (3.16)

Then by (3.3), (3.7) and (3.13), we have qθ ∈ S(m). Hence it suffices to show that there

exists constant h0 > 0 such that for h < h0,

qθ − z is elliptic in S(m) for |z| > 1, π/2 < arg z < π.

For a detailed introduction of general elliptic theory, we refer to [15, §4].

Using (3.4) we calculate:

φθ(ξ)
2 = (ξ + θψ(ξ)) · (ξ + θψ(ξ)) = (|ξ|+ θρ(|ξ|))2. (3.17)

Then for θ ∈ Dγ, by (3.3), we have

− π/4 < arg φθ(ξ)
2 < π/4, |φθ(ξ)2| >

(
1− tan

π

8

)2

|ξ|2. (3.18)

To obtain similar bounds for the argument and modulus of (Dφθ(ξ)
−2ξ∗) · ξ∗, we recall (3.6)

to compute

(Dφ−2
θ ξ∗) · ξ∗ = (1 + θρ(|ξ|)|ξ|−1)−2(η∗1

2 + · · ·+ η∗n−1
2) + (1 + θρ′(|ξ|))−2η∗n

2, (3.19)

where η∗ = AT ξ∗ ∈ Rn with the same orthogonal matrix A as in (3.6). By (3.3), for θ ∈ Dγ,

we have

± Im θ ≥ 0 =⇒ 0 ≤ ± arg(1 + θρ(|ξ|)|ξ|−1), ± arg(1 + θρ′(|ξ|)) < π/8,
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Hence, for all θ ∈ Dγ,

± Im θ ≥ 0 =⇒ 0 ≤ ∓ arg (Dφ−2
θ ξ∗) · ξ∗ < π/4, (3.20)

and by applying the following basic inequality with (3.3) to (3.19),

|r1e
iθ1 + r2e

iθ2|2 = r2
1 + r2

2 + 2r1r2 cos(θ1 − θ2) ≥ 1− | cos(θ1 − θ2)|
2

(r1 + r2)2, (3.21)

we also obtain that for all θ ∈ Dγ,

|(Dφ−2
θ ξ∗) · ξ∗| ≥ C|η∗|2 = C|ξ∗|2. (3.22)

Since arg(φθ(ξ)
2 − z) ∈ (−π/2, π/4) for π/2 < arg z < π and arg−i(Dφ−2

θ ξ∗) · ξ∗ ∈

(−3π/4,−π/4) by (3.20), using (3.21) together with (3.18) and (3.22), we have

|φθ(ξ)2 − z − i(Dφ−2
θ ξ∗) · ξ∗| ≥ C|φθ(ξ)2 − z|+ C| − i(Dφ−2

θ ξ∗) · ξ∗|

≥ C|φθ(ξ)2|+ C|z|+ C|ξ∗|2

≥ C(1 + |ξ|2 + |ξ∗|2) = Cm.

(3.23)

Then by (3.15), we conclude that there exists h0 > 0 such that for all h < h0, |qθ−z| ≥ Cm,

which completes the proof.

Proposition 2. For any β ∈ (γ′, γ) satisfying

Ω b {x+ iy : x > 0, y > −βρ(x)}, (3.24)

there exists ε0 = ε0(Ω, γ, β) such that for all 0 < ε < ε0,

σ(Qε,−iβ) ∩ {λ2 : λ ∈ Ω} = ∅.

Proof. As in the proof of Proposition 1, it suffices to show that there exists h0 = h0(Ω, γ, β)

such that for 0 < h < h0,

q−iβ(ξ, ξ∗;h)− λ2 is elliptic in S(m) for λ ∈ Ω.

Recalling arg−i(Dφ−2
−iβξ

∗) · ξ∗ ∈ [−π/2,−π/4) by (3.20), in order to apply (3.21), we claim

that

∃ δ > 0 s.t. arg(φ−iβ(ξ)2 − λ2) ≤ π/2− δ or ≥ 3π/4 + δ, for all λ ∈ Ω, ξ ∈ Rn. (3.25)
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FIG. 1. An illustration of the results of Proposition 2 in the case of dim = 1, β = 0.4, which shows

that the numerical range of the principal symbol of Qε,−0.4i avoids the region {λ2 : λ ∈ Ω}. We

choose ρ(·) = 0.4 tanh(·) to compute the numerical range of (φ−0.4i(ξ)
2 − i(φ′−0.4i(ξ))

−2ξ∗2)1/2.

We notice that for |ξ| � 1, φ−iβ(ξ)2 = (|ξ| − iβ)2 by (3.17), thus arg(φ−iβ(ξ)2 − λ2) ∈

(−π/4, 0), in other words, there exists some large R such that (3.25) holds for |ξ| > R

with δ = π/2. It remains to show that (3.25) holds for all |ξ| ≤ R and λ ∈ Ω. We

argue by contradiction: if it does not hold, there must exist λ ∈ Ω, ξ ∈ Rn such that

arg(φ−iβ(ξ)2 − λ2) ∈ [π/2, 3π/4], i.e.

0 ≤ −Re ((|ξ| − iβρ(|ξ|))2 − λ2) ≤ Im ((|ξ| − iβρ(|ξ|))2 − λ2),

which immediately implies Imλ ≤ 0. Let t = |ξ| and write λ = x− iy, then we have

x2 − y2 − t2 + β2ρ(t)2 ≤ 2xy − 2βtρ(t) (3.26)

βtρ(t) ≤ xy (3.27)

Since x > 0 and 0 ≤ y < βρ(x) by (3.24), then (3.26) implies that

x2 − 2βxρ(x)− β2ρ(x)2 < t2 − 2βtρ(t)− β2ρ(t)2.
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Let S(x) = x2 − 2βxρ(x)− β2ρ(x)2, by (3.3),

S ′(x) = 2x

(
1− βρ(x)

x
− βρ′(x)− βρ(x)

x
· βρ′(x)

)
> 2x

(
1− 2 tan

π

8
− tan2 π

8

)
= 0,

thus S(x) < S(t) =⇒ x < t. Recalling that ρ is non-decreasing, we have βtρ(t) ≥ βxρ(x) >

xy, which contradicts (3.27). Hence (3.25) holds, using (3.21) and (3.22), we obtain that

|φ−iβ(ξ)2 − λ2 − i(Dφ−2
−iβξ

∗) · ξ∗| ≥ C(δ)(|(|ξ| − iβρ(|ξ|))2 − λ2|+ |ξ∗|2).

Since for |ξ| � 1,

|(|ξ| − iβρ(|ξ|))2 − λ2| = |(|ξ| − iβ)2 − λ2| ≥ |ξ|2 − β2 − |λ|2,

there exists R = R(Ω, β) > 0 such that |(|ξ| − iβρ(|ξ|))2 − λ2| ≥ (1 + |ξ|2)/2 whenever

|ξ| > R. We also note that, by (3.24),

dist ({t− iβρ(t) : t ≥ 0}, ±Ω) ≥ C = C(Ω, γ, β) > 0,

thus |(|ξ| − iβρ(|ξ|))2 − λ2| ≥ C2 ≥ C2(1 + R2)−1(1 + |ξ|2) for |ξ| ≤ R. Hence |φ−iβ(ξ)2 −

λ2 − i(Dφ−2
−iβξ

∗) · ξ∗| ≥ C(1 + |ξ|2 + |ξ∗|2), where C determined by Ω, γ, β. Then by (3.15),

we conclude that there exist h0 = h0(Ω, γ, β) and C = C(Ω, γ, β) > 0 such that

for all 0 < h < h0, λ ∈ Ω, |q−iβ(ξ, ξ∗;h)− λ2| ≥ Cm(ξ, ξ∗), (3.28)

which completes the proof.

Now we state the main result of this section:

Lemma 2. For any 0 < a′ < a < b and γ′ < γ such that the rectangle

Ω := (a′, a) + i(−γ′, b) b {λ ∈ C : −π/8 < arg λ < 7π/8},

there exist constant C = C(Ω, γ) > 0 and ε0 = ε0(Ω, γ) > 0 such that uniformly for

0 < ε < ε0,

‖e−γ|x|(−∆− iεx2 − λ2)−1e−γ|x|‖L2→L2 ≤ C, ∀λ ∈ Ω.

Proof. We consider the matrix element

Bε
f,g(λ) := 〈e−γ|x|(−∆− iεx2 − λ2)−1e−γ|x|f, g〉L2

x
, for f, g ∈ L2(Rn),
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where 〈u, v〉L2
x

=
∫
Rn uv̄ dx is the standard L2 inner product. It suffices to show that there

exist C, ε0 such that uniformly for 0 < ε < ε0,

|Bε
f,g(λ)| ≤ C‖f‖L2‖g‖L2 , for all f, g ∈ L2, λ ∈ Ω. (3.29)

Recalling (3.1), both −∆x− iεx2− λ2 and ξ2 + iε∆ξ − λ2 are invertible for λ ∈ Ω. Then we

have

Bε
f,g(λ) = 〈 (−∆x − iεx2 − λ2)−1e−γ|x|f, e−γ|x|g〉L2

x

= 〈F−1(ξ2 + iε∆ξ − λ2)−1Fe−γ|x|f, e−γ|x|g〉L2
x

= 〈 (ξ2 + iε∆ξ − λ2)−1F(e−γ|x|f)(ξ), F(e−γ|x|g)(ξ)〉L2
ξ
.

(3.30)

Let Fγ(ξ) := F(e−γ|x|f)(ξ) and Gγ(ξ) := F(e−γ|x|g)(ξ), recalling the formula

F(e−|x|)(ξ) = cn(1 + ξ2)−
n+1
2 , cn = (2π)

n
2 Γ((n+ 1)/2)π−

n+1
2 ,

then Fγ = Kγ ∗ f̂ and Gγ = Kγ ∗ ĝ, where Kγ(ξ) = cnγ (γ2 + ξ2)−
n+1
2 .

First we consider, for θ ∈ R, |θ| < γ and Uθ defined by (3.8), the integral kernel of the

map Uθ ◦ (Kγ ∗ ):

K(ξ, η; θ) := (detDφθ(ξ))
1
2Kγ(φθ(ξ)− η), ξ, η ∈ Rn.

We claim that K(ξ, η; θ) has an analytic extension to θ ∈ Dγ. Since Kγ extends analytically

to the strip {ξ ∈ Cn : | Im ξ| < γ}, it suffices to show that | Im(φθ(ξ)− η)| = | Im θψ(ξ)| < γ,

which is a direct consequence of θ ∈ Dγ and |ψ(ξ)| ≤ 1 by (3.4). Then for θ ∈ Dγ, using

(3.3) and (3.9), we can estimate K(ξ, η; θ) as follows:

|K(ξ, η; θ)| ≤ Cγ |γ2 + (ξ + θψ(ξ)− η)2|−
n+1
2

≤ Cγ |γ2 − | Im θ|2|ψ(ξ)|2 + (ξ − η + Re θψ(ξ))2|−
n+1
2

≤ Cγ (γ2 − | Im θ|2 + (|ξ − η| − |Re θ|)2)−
n+1
2

thus

max { sup
ξ∈Rn

∫
Rn
|K(ξ, η; θ)|dη, sup

η∈Rn

∫
Rn
|K(ξ, η; θ)|dξ }

≤ Cγ

∫
x∈Rn

(γ2 − | Im θ|2 + (|x| − |Re θ|)2)−
n+1
2 dx ≤ C(γ, θ).

(3.31)

Hence, by Schur’s criterion, Uθ ◦ (Kγ ∗ ), first defined for θ ∈ Dγ∩R, with the integral kernel

K(ξ, η; θ), extends to θ ∈ Dγ as an analytic family of operators L2 → L2. In particular,

Dγ 3 θ 7→ UθFγ = Uθ(Kγ ∗ f̂) and UθGγ = Uθ(Kγ ∗ ĝ),
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are two analytic families of functions in L2(Rn).

Now we define

Bε
f,g(λ; θ) = 〈 (Qε,θ − λ2)−1UθFγ, Uθ̄Gγ〉

for θ ∈ Dγ, with Qε,θ given by (3.11), where we write Uθ̄Gγ instead of UθGγ. Then by

Proposition 1, there exists ε0 = ε0(Ω, γ) such that for all 0 < ε < ε0, and |λ| > 1 with

π/4 < arg λ < π/2,

Dγ 3 θ 7→ Bε
f,g(λ; θ) is analytic.

However, for θ ∈ Dγ ∩ R, since Uθ is unitary, by (3.30) we have

Bε
f,g(λ; θ) = 〈Uθ(ξ2 + iε∆ξ − λ2)−1U−1

θ UθFγ, UθGγ〉

= 〈Uθ(ξ2 + iε∆ξ − λ2)−1Fγ, UθGγ〉

= 〈 (ξ2 + iε∆ξ − λ2)−1Fγ, Gγ〉 = Bε
f,g(λ).

Thus by analyticity, Bε
f,g(λ; θ) ≡ Bε

f,g(λ), ∀ θ ∈ Dγ whenever |λ| > 1, π/4 < arg λ < π/2.

In particular, for fixed β ∈ (γ′, γ) satisfying (3.24),

Bε
f,g(λ) = Bε

f,g(λ;−iβ) whenever |λ| > 1, π/4 < arg λ < π/2.

In view of Proposition 2 and (3.1), both Bε
f,g(λ) and Bε

f,g(λ;−iβ) are analytic in Ω. Without

loss of generality, we may assume that a > 1 in (1.4), then

Ω ∩ {λ : |λ| > 1, π/4 < arg λ < π/2} 6= ∅,

where Bε
f,g(λ) and Bε

f,g(λ;−iβ) coincide. Hence by analyticity, we conclude that for each

0 < ε < ε0,

Bε
f,g(λ) = Bε

f,g(λ;−iβ) = 〈 (Qε,−iβ − λ2)−1U−iβFγ, UiβGγ 〉, ∀λ ∈ Ω. (3.32)

By the elliptic theory of semiclassical differential operators – see [15, §4.7], (3.28) implies

that there exists ε0 = ε0(Ω, γ, β) such that for all 0 < ε < ε0,

‖(Qε,−iβ − λ2)−1‖L2→L2 ≤ C(Ω, γ, β), ∀λ ∈ Ω. (3.33)

Recalling (3.31), by Schur’s criterion, we obtain that

‖U−iβFγ‖L2 = ‖U−iβ ◦ (Kγ ∗ f̂)‖L2 ≤ C(γ, β)‖f̂‖L2 = C(γ, β)‖f‖L2

‖UiβGγ‖L2 = ‖Uiβ ◦ (Kγ ∗ ĝ)‖L2 ≤ C(γ, β)‖ĝ‖L2 = C(γ, β)‖g‖L2

(3.34)

Combining (3.32), (3.33) and (3.34), also noticing that β can be determined by Ω, γ, we

obtain (3.29) with C = C(Ω, γ), which completes the proof.
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4. EIGENVALUES OF THE REGULARIZED OPERATOR

In this section we will review the meromorphy of the resolvent

RV,ε(λ) := (Pε − λ2)−1, ε > 0,

with Pε in (1.2), in a similar form to the meromorphic continuation of the weighted resolvent
√
V RV (λ)

√
V given by (2.1).

First we write Rε(λ) := (−∆− iεx2 − λ2)−1 and recall

Rε(λ) = Oδ(1/|λ|) : L2 → L2, δ < arg λ < 3π/4− δ, |λ| > δ, (4.1)

which follows from (semiclassical) ellipticity. Then

(Pε − λ2)Rε(λ) = I + V Rε(λ), −π/8 < arg λ < 7π/8. (4.2)

In view of (4.1), I+V Rε(λ) is invertible for π/4 < arg λ < π/2, |λ| � 1. Since Rε(λ) : L2 →

H2 is analytic in {λ : −π/8 < arg λ < 7π/8}, see (3.1), V : H2 → L2 is compact by (1.1),

we have λ 7→ V Rε(λ) is an analytic family of compact operators for −π/8 < arg λ < 7π/8.

Hence λ 7→ (I + V Rε(λ))−1 is a meromorphic family of operators in the same range of λ.

Using (4.2), we conclude that RV,ε(λ) = Rε(λ)(I + V Rε(λ))−1 is meromorphic for −π/8 <

arg λ < 7π/8 (in fact RV,ε(λ) is meromorphic for λ ∈ C by the Gohberg–Sigal factorization

theorem - see [12, §C.4]), with poles {λj(ε)}∞j=1, i.e. {λj(ε)2}∞j=1 are the eigenvalues of Pε in

{z ∈ C : arg z 6= −π/4}. Then we have

Lemma 3. For each ε > 0,

λ 7→ (I +
√
V Rε(λ)

√
V )−1, −π/8 < arg λ < 7π/8,

is a meromorphic family of operators on L2(Rn) with poles of finite rank. Moreover,

mε(λ) :=
1

2πi
tr

∮
λ

(I +
√
V Rε(ζ)

√
V )−1∂ζ(

√
V Rε(ζ)

√
V ) dζ, (4.3)

where the integral is over a positively oriented circle enclosing λ and containing no poles

other than possibly λ, satisfies

mε(λ) =
1

2πi
tr

∮
λ

(ζ2 − Pε)−12ζ dζ. (4.4)
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Remark. The multiplicity of an eigenvalue λ2 of Pε can be defined by the right side of

(4.4), thus Lemma 3 implies that the poles of (I+
√
V Rε(λ)

√
V )−1 coincide with {λj(ε)}∞j=1

given in (1.3), with agreement of multiplicities.

Proof. Following the above argument, it easy to see that λ 7→
√
V Rε(λ)

√
V is an analytic

family of compact operators for −π/8 < arg λ < 7π/8. Then

λ 7→ (I +
√
V Rε(λ)

√
V )−1, −π/8 < arg λ < 7π/8,

is a meromorphic family of operators, since I +
√
V Rε(λ)

√
V is invertible for π/4 < arg λ <

π/2, |λ| � 1 by (4.1). In this range of λ, I + V Rε(λ) is also invertible by the Neumann

series argument, thus we have

(Pε − λ2)−1 = Rε(λ)(I + V Rε(λ))−1

= Rε(λ)
∞∑
j=0

(−1)j(V Rε(λ))j

= Rε(λ)(I −
√
V

∞∑
j=0

(−1)j(
√
V Rε(λ)

√
V )j
√
V Rε(λ))

= Rε(λ)[ I −
√
V (I +

√
V Rε(λ)

√
V )−1

√
V Rε(λ) ].

(4.5)

Since both sides of (4.5) are meromorphic for −π/8 < arg λ < 7π/8, by meromorphy, we

conclude that (4.5) holds for all −π/8 < arg λ < 7π/8, as an identity between meromorphic

families of operators.

To obtain the multiplicity formula, we fix any λ with −π/8 < arg λ < 7π/8, then there

exists a neighborhood λ ∈ U in this half plane and finite rank operators Aj, 1 ≤ j ≤ J

such that (I +
√
V Rε(ζ)

√
V )−1 −

∑J
j=1

Aj
(ζ−λ)j

is analytic in ζ ∈ U . Let Cλ ⊂ U be a

positively oriented circle enclosing λ and containing no poles of (I +
√
V Rε(ζ)

√
V )−1 other

than possibly λ, thus it also contains no poles of (ζ2 − Pε)
−1 other than possibly λ as a

consequence of (4.5). On the one hand, we can compute

mε(λ) =
1

2πi
tr

∫
Cλ

(I +
√
V Rε(ζ)

√
V )−1

√
V Rε(ζ)2

√
V 2ζdζ

=
1

2πi
tr

∫
Cλ

J∑
j=1

Aj
√
V Rε(ζ)22ζ

√
V

(ζ − λ)j
dζ

=
J∑
j=1

j−1∑
k=0

1

k!(j − 1− k)!
trAj

√
V ∂kζRε(ζ) ∂j−1−k

ζ (Rε(ζ)2ζ)
√
V .

(4.6)
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On the other hand, by (4.5), we have

1

2πi
tr

∮
λ

(ζ2 − Pε))−12ζdζ

=
1

2πi
tr

∫
Cλ

J∑
j=1

Rε(ζ)2ζ
√
V Aj
√
V Rε(ζ)

(ζ − λ)j
dζ

=
J∑
j=1

j−1∑
k=0

1

k!(j − 1− k)!
tr ∂j−1−k

ζ (Rε(ζ)2ζ)
√
V Aj
√
V ∂kζRε(ζ).

(4.7)

Now we compare (4.6) and (4.7), since each Aj has finite rank, we can apply cyclicity of the

trace to obtain the multiplicity formula (4.4).

5. PROOF OF CONVERGENCE

The proof of convergence is based on Lemma 1, Lemma 3, with an application of the

Gohberg–Sigal–Rouché theorem, see Gohberg–Sigal [16] and [12, Appendix C.].

We now state a more precise version of Theorem 1 involving the multiplicities given in

(2.3) and (4.3) as follows:

Theorem 2. For any Ω given in (1.4), there exists δ0 = δ0(Ω) satisfying the following: for

any 0 < δ < δ0, there exists εδ > 0 such that for any λ ∈ Ω with m(λ) > 0,

# {λj(ε)}∞j=1 ∩B(λ, δ) = m(λ), for all 0 < ε < εδ,

where {λj(ε)}∞j=1 given in (1.3) is counted with multiplicity, B(λ, δ) := {z ∈ C : |z−λ| < δ}.

Proof. In view of Lemma 1, the poles of (I +
√
V R0(λ)

√
V )−1 are isolated in the region

{λ ∈ C : Reλ > 0, Imλ > −γ}, thus there are finitely many λ ∈ Ω with m(λ) > 0, denoted

by λ1, . . . , λJ . We choose δ0 > 0 such that B(λj, δ0), j = 1, . . . , J are disjoint discs in Ω,

then for any fixed 0 < δ < δ0 and each λ ∈ Ω with m(λ) > 0, we have

‖(I +
√
V R0(ζ)

√
V )−1‖L2→L2 < C(δ), ∀ ζ ∈ ∂B(λ, δ),

for some constant C(δ) > 0.

In order to apply the Gohberg–Sigal–Rouché theorem, we need to estimate :

‖I +
√
V Rε(ζ)

√
V − (I +

√
V R0(ζ)

√
V )‖L2→L2 , for any ζ ∈ Ω.
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1. Choose χ ∈ C∞c (Rn) satisfying χ ≡ 1 in BRn(0, 1) and suppχ ⊂ BRn(0, 2), here

BRn(0, r) := {x ∈ Rn : |x| < r}, we define χR(x) = χ(R−1x) and calculate:

I +
√
V Rε(ζ)

√
V − (I +

√
V R0(ζ)

√
V )

=
√
V Rε(ζ)

√
V − χR

√
V Rε(ζ)χR

√
V +
√
V χR(Rε(ζ)−R0(ζ))χR

√
V

− (
√
V R0(ζ)

√
V − χR

√
V R0(ζ)χR

√
V ).

(5.1)

2. The first term can be written as (1 − χR)
√
V Rε(ζ)

√
V + χR

√
V Rε(ζ)(1 − χR)

√
V . Let

γ̃ = (γ + γ′)/2, then

(1− χR)
√
V Rε(ζ)

√
V = (1− χR)

√
V eγ̃|x|(e−γ̃|x|Rε(ζ))e−γ̃|x|)

√
V eγ̃|x|,

where |
√
V (x)eγ̃|x|| ≤ Ce(γ̃−γ)|x| = Ce−(γ−γ′)|x|/2. By Lemma 2, there exists ε0 = ε0(Ω, γ̃)

such that for any 0 < ε < ε0, ‖e−γ̃|x|Rε(ζ))e−γ̃|x|‖L2→L2 ≤ C(Ω, γ̃). Thus,

‖(1− χR)
√
V Rε(ζ)

√
V ‖L2→L2 ≤ C(Ω, γ)e−(γ−γ′)R/2, for any 0 < ε < ε0.

Similarly, we can bound ‖χR
√
V Rε(ζ)(1−χR)

√
V ‖L2→L2 by the right side above. Hence for

any 0 < ε < ε0,

‖
√
V Rε(ζ)

√
V − χR

√
V Rε(ζ)χR

√
V ‖L2→L2 ≤ Ce−(γ−γ′)R/2, ∀ ζ ∈ Ω. (5.2)

3. We can estimate the third term in (5.1) by a similar argument. (2.2) implies that

‖e−γ̃|x|R0(ζ)e−γ̃|x|‖L2→L2 ≤ C(Ω, γ), ∀ ζ ∈ Ω.

Hence, arguing as above, we obtain that

‖
√
V R0(ζ)

√
V − χR

√
V R0(ζ)χR

√
V ‖L2→L2 ≤ Ce−(γ−γ′)R/2, ∀ ζ ∈ Ω. (5.3)

4. We note that

χR(Rε(ζ)−R0(ζ))χR = iε χR(−∆− iεx2 − ζ2)−1x2(∆− ζ2)−1χR,

and recall [4] that there exists C = C(Ω, χR) (independent of ε) such that

‖χR(−∆− iεx2 − ζ2)−1x2(∆− ζ2)−1χR‖L2→L2 ≤ C, ∀ ζ ∈ Ω, ε > 0,

which is proved using the method of complex scaling, see [4, §5] for details. Hence

‖
√
V χR(Rε(ζ)−R0(ζ))χR

√
V ‖L2→L2 ≤ C(Ω, χR) ε, ∀ ζ ∈ Ω, ε > 0. (5.4)
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By (5.2) and (5.3), we can first fix R sufficiently large such that

‖
√
V Rε(ζ)

√
V − χR

√
V Rε(ζ)χR

√
V ‖L2→L2 ≤ 1/(3C(δ)), ∀ ζ ∈ Ω, 0 ≤ ε < ε0.

Then by (5.4), there exists εδ > 0 such that for all 0 < ε < εδ,

‖
√
V χR(Rε(ζ)−R0(ζ))χR

√
V ‖L2→L2 ≤ 1/(3C(δ)), ∀ ζ ∈ Ω.

We may assume that εδ < ε0, thus by (5.1), we conclude that for each 0 < ε < εδ,

‖(I +
√
V R0(ζ)

√
V )−1( I +

√
V Rε(ζ)

√
V − (I +

√
V R0(ζ)

√
V ) )‖L2→L2 < 1,

on ∂B(λ, δ).

Now we apply the Gohberg–Sigal–Rouché theorem to obtain that

m(λ) =
1

2πi
tr

∫
∂B(λ,δ)

(I +
√
V R0(ζ)

√
V )−1∂ζ(

√
V R0(ζ)

√
V ) dζ

=
1

2πi
tr

∫
∂B(λ,δ)

(I +
√
V Rε(ζ)

√
V )−1∂ζ(

√
V Rε(ζ)

√
V ) dζ,

for each 0 < ε < εδ. Let λ1(ε), . . . , λK(ε) be the distinct poles of (I +
√
V Rε(ζ)

√
V )−1 in

B(λ, δ), then

m(λ) =
K∑
k=1

1

2πi
tr

∮
λk(ε)

(I +
√
V Rε(ζ)

√
V )−1∂ζ(

√
V Rε(ζ)

√
V ) dζ =

K∑
k=1

mε(λk(ε)),

Therefore, with Lemma 3 and (4.4), we obtain that

# {λj(ε)}∞j=1 ∩B(λ, δ) = m(λ), ∀ 0 < ε < εδ,

which completes the proof.
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Physique théorique, volume 45, page 339, (1986).
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