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RESONANCES AS VISCOSITY LIMITS FOR EXTERIOR DILATION

ANALYTIC POTENTIALS

HAOREN XIONG

Abstract. For exterior dilation analytic potential, V , we use the method of complex

scaling to show that the resonances of −∆+ V , in a conic neighbourhood of the real

axis, are limits of eigenvalues of −∆+ V − iεx
2 as ε → 0+, if V can be analytically

extended from Rn to a truncated cone in Cn.

1. Introduction and statement of results

We extend the results of [Z2], when V ∈ L∞
comp, to the case of exterior dilation

analytic potentials. For motivation and pointers to the literature we refer to [Z2].

Thus, we consider

H := −∆+ V,

where V is a real-valued potential which can be analytically extended from {x ∈ Rn :

|x| > R}, for some R > 0, to a truncated cone

CR
β0

:= {z ∈ C
n : | Im z| < tanβ0|Re z| and |Re z| > R}, β0 ≤ π/8.

We still denote the analytic extension by V and assume that

lim
CR
β0

∋|z|→∞
V (z) = 0. (1.1)

The resonances of H are defined by the Aguiliar-Balslev-Combes-Simon theory, see

[HS, §16, §18], [DyZ2, §4.5] and a review in §3.
We now introduce a regularized operator,

Hε := −∆− iεx2 + V, ε > 0. (1.2)

(We write x2 := x2
1 + · · ·+ x2

n.) It is easy to see, with details reviewed in §4, that Hε

is a non-normal unbounded operator on L2(Rn) with a discrete spectrum. We have

Theorem 1. Suppose that {zj(ε)}∞j=1 are the eigenvalues of Hε. Then, uniformly on

any compact subsets of {z : −2β0 < arg z < 3π/2 + 2β0},
zj(ε) → zj , ε → 0+,

where zj are the resonances of H.
1
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Notation. We use the following notation: f = Oℓ(g)H means that ‖f‖H ≤ Cℓg where

the norm (or any seminorm) is in the space H , and the constant Cℓ depends on ℓ.

When either ℓ or H are absent then the constant is universal or the estimate is scalar,

respectively. When G = Oℓ(g) : H1 → H2 then the operator G : H1 → H2 has its norm

bounded by Cℓg. Also when no confusion is likely to result, we denote the operator

f 7→ gf where g is a function by g.

Acknowledgments. The author would like to thank Maciej Zworski for helpful

discussions. I am also grateful to the anonymous referee for the careful reading of the

first version and for the valuable comments. This project was supported in part by

the National Science Foundation grant 1500852.

2. spectral deformation and analytic vectors

We will review several basic concepts in the Aguilar-Balslev-Combes-Simon theory,

such as spectral deformation and analytic vectors. For a detailed introduction, we refer

to [HS, §17] and the references given there.

Let h ∈ C∞(R) be a non-decreasing function which satisfies
{

h(t) = 0, t < 2R,

h(t) = 1, t > 8R.
(2.1)

Moreover, we assume that

sup
t∈R

h(t) + th′(t) ≤ 3/2. (2.2)

We define g : Rn → Rn as a smooth mapping by

g(x) := h(|x|) x =

{

0, |x| < 2R,

x, |x| > 8R,
(2.3)

and consider, for θ ∈ R, the related family of maps φθ : R
n → Rn defined by

φθ(x) = x+ θg(x) (2.4)

We let Df denote the derivative of a map f : Rn → Rn, then

Dg(x) = h(|x|)I + |x|−1h′(|x|)x · xT .

Using diagonalization, It is easy to see that

0 ≤ h(|x|)I ≤ Dg(x) ≤ (h(|x|) + |x|h′(|x|))I ≤ 3/2 I (2.5)

where A ≤ B means B − A is positive semi-definite and the last inequality is implied

by (2.2). Hence supx∈Rn ‖Dg(x)‖ ≤ 3/2, where ‖ · ‖ denotes the operator norm on the
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set of linear transformation on Rn. We note that Dφθ(x) = I + θ(Dg)(x), if |θ| < 2/3,

then Dφθ is invertible by a Neumann series argument,

(Dφθ)
−1 =

∞
∑

j=0

(−1)jθj(Dg)j.

Hence φθ is a diffeomorphism of Rn for |θ| < 2/3 by the inverse function theorem.

We should remark that all the above argument is valid when we extend the definition

(2.4) of φθ to θ ∈ C. We have φθ : R
n → Cn is a diffeomorphism provided |θ| < 2/3.

We now introduce the behavior of functions under the action of the maps φθ. We

first define Uθ for θ ∈ R by

(Uθf)(x) = Jθ(x)
1/2f(φθ(x)) (2.6)

where Jθ(x) is the Jacobian of φθ,

Jθ(x) = detDφθ(x) = det(I + θ(Dg)(x)). (2.7)

It is east to see that Uθ, θ ∈ R is unitary on L2(Rn) with the inverse U−1
θ given by

(U−1
θ f)(x) = Jθ(φ

−1
θ (x))−1/2f(φ−1

θ (x)). (2.8)

(2.5) and (2.7) show that Jθ(x)
1/2 extends analytically to complex θ provided θ < 2/3.

Hence, to extend the operators Uθ from θ ∈ R to θ ∈ C, at least for small |θ|, we
need to find a dense set of functions f in L2(Rn) that can be analytically extended on

a small complex neighborhood of Rn in Cn such that f ◦ φθ ∈ L2(Rn). For that we

introduce the set of analytic vectors in L2(Rn).

Definition 1. Let A be the linear space of all entire functions f(z) having the property

that in any conical region Cε,
Cε := {z ∈ C

n : | Im z| ≤ (1− ε) Re z},
for any ε > 0, we have for any k ∈ N,

lim
z∈Cε→∞

|z|k|f(z)| = 0.

The set of analytic vectors in L2(Rn) are the restrictions to Rn of A, which is also

denoted by A.

We define a domain Dβ0 in C by

Dβ0 = {θ ∈ C : |Re θ|+ | Im θ| < tanβ0}. (2.9)

Note that Dβ0 ⊂ {z ∈ C : |z| < 1/2} since β0 ≤ π/8, (2.5) and (2.7) guarantee that

the Jacobian Jθ is uniformly bounded for θ ∈ Dβ0. Then, we recall the following results

in [HS, Proposition 17.10]:
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Proposition 2. Let U ≡ {Uθ : θ ∈ Dβ0} be a spectral deformation family associated

with vector field g defined by (2.3). Then,

• the map (θ, f) ∈ Dβ0 ×A → Uθf is an L2-analytic map ;

• for any θ ∈ Dβ0, UθA is dense in L2(Rn).

We conclude this section with some properties about the deformation of Rn ⊂ C
n

under the map φθ provided θ ∈ Dβ0. We recall that φθ : R
n → Cn is injective with the

Jacobian Jθ 6= 0 provided |θ| < 2/3. Hence φθ(R
n) ⊂ Cn is an n-dimensional totally

real submanifolds, see [DyZ2, §4.5]. Let Γa(θ) = φθ(R
n), where a(θ) ∈ (−π/2, π/2) is

defined by

a(θ) = arg(1 + θ). (2.10)

In the literature about complex scaling, one can define L2(Γa(θ)) with volume element

|dw| = |Jθ(x)| dx where w = φθ(x) are the coordinates on Γa(θ), see [DyZ2, §2.7, §4.5]
for details. Then we have the following:

Proposition 3. For any θ ∈ Dβ0, Γa(θ) satisfies

Γa(θ) ∩ BCn(0, 2R) = BRn(0, 2R),

Γa(θ) ∩ C
n \BCn(0, 12R) = eia(θ)Rn ∩ C

n \BCn(0, 12R),

Γa(θ) ⊂ R
n ∪ CR

β0
.

(2.11)

Furthermore, the spectral deformation operator Uθ extends to an isometry:

Uθ : L
2(Γa(θ)) → L2(Rn).

Proof. In view of (2.3) and (2.4), it is easy to see that Γa(θ) = φθ(R
n) satisfies the first

two equations of (2.11). For θ ∈ Dβ0, we have

| Imφθ(x)|
|Reφθ(x)|

=
| Im θ||χ(|x|)|
|1 + Re θχ(|x|)| ≤

| Im θ|
1− |Re θ| < tanβ0,

where the last inequality is implied by (2.9). Moreover, φθ(x) = x for |x| < 2R, and

|Reφθ(x)| ≥ (1 − |Re θ|)|x| > (1 − tanβ0)|x| > |x|/2 ≥ R provided |x| ≥ 2R, since

β0 ≤ π/8. Hence Γa(θ) ⊂ Rn ∪ CR
β0
.

Now we assume that θ ∈ Dβ0, for any f ∈ L2(Γa(θ)), we can define Uθf on Rn by

(2.6). To see Uθf ∈ L2(Rn), we compute directly:
∫

Rn

|Uθf(x)|2 dx =

∫

Rn

|Jθ(x)
1/2f(φθ(x))|2 dx

=

∫

Rn

|f(φθ(x))|2|Jθ(x)| dx

=

∫

Γa(θ)

|f(w)|2 |dw| < ∞,

(2.12)
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which also shows that ‖Uθf‖L2(Rn) = ‖f‖L2(Γa(θ)) and Uθ is one-to-one. It remains to

show that Uθ is onto. For g ∈ L2(Rn), let G(w) = Jθ(φ
−1
θ (w))−1/2g(φ−1

θ (w)), w ∈ Γa(θ).

We can follow (2.12) to derive
∫

Γa(θ)

|G(w)|2 |dw| =
∫

Rn

|g(x)|2 dx.

Hence G ∈ L2(Γa(θ)), then we conclude that Uθ is onto since UθG = g. �

3. resonances

We will follow Aguilar-Balslev-Combes-Simon theory to define the resonances of

H ≡ −∆+ V , see [HS, §16, §18] and those resonances in a conic neighborhood of the

real axis can be identified with the eigenvalues of certain non-self-adjoint operators

associated with H . Using the analytic vectors A, we recall the definition:

Definition 4. The resonances of H associated with analytic vectors A are the poles

of the meromorphic continuations of all matrix elements 〈f, RH(z)g〉 (RH(z) denotes

the resolvent of H), f, g ∈ A, from {z ∈ C : Im z > 0} to {z ∈ C : Im z ≤ 0}.

First we introduce the spectral deformed Schrödinger operatorsH(θ) ofH associated

with the spectral deformation family U = {Uθ : θ ∈ Dβ0}. Consider, for θ ∈ Dβ0 ∩ R,

H(θ) := UθHU−1
θ = p2θ + V (φθ(x)), (3.1)

where

p2θ = Uθp
2U−1

θ , pj ≡
1

i

∂

∂xj
. (3.2)

In view of Proposition 3, we can extend H(θ) to θ ∈ Dβ0. We recall the following basic

facts about p2θ, θ ∈ Dβ0 in [HS, §18]:

Proposition 5. Let p2θ be as defined in (3.2), then p2θ, θ ∈ Dβ0 is an analytic family of

operators with domain D(p2θ) = H2(Rn). For the spectrum, we have σ(p2θ) = σ
ess
(p2θ) =

e−2ia(θ)[0,∞).

And for the resolvent Rθ(z) := (p2θ − z)−1 we have:

Proposition 6. For δ > 0, we have

Rθ(z) = Oδ(1/|z|) : L2(Rn) → L2(Rn), −2a(θ) + δ < arg z < 2π − 2a(θ)− δ. (3.3)

Proof. We note that in the notation of Proposition 3,

p2θ = Uθ(−∆a(θ))U
−1
θ , (3.4)
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where −∆a(θ) : H
2(Γa(θ)) → L2(Γa(θ)) is defined as the restriction of ∆z to the totally

real submanifold Γa(θ), see [DyZ2, §4.5]. Since Uθ : L2(Γa(θ)) → L2(Rn) and U−1
θ :

L2(Rn) → L2(Γa(θ)) are both isometries, we have

‖(p2θ − z)−1‖L2(Rn)→L2(Rn) = ‖(−∆a(θ) − z)−1‖L2(Γa(θ))→L2(Γa(θ)), z /∈ e−2ia(θ)[0,∞),

and thus (3.3) is a direct consequence of [DyZ2, Theorem 4.35]. �

Then we introduce some preliminary properties of the spectrum of H(θ):

Proposition 7. There exists R > 0 such that for any θ ∈ Dβ0, we have

σ(H(θ)) ∩ i(R,∞) = ∅.
As for the essential spectrum σ

ess
(H(θ)), we have more precisely,

σ
ess
(H(θ)) = e−2ia(θ)[0,∞).

Remark: In fact, σ(H(θ)) ∩ {z : 0 < arg z < 2π − 2a(θ)} is discrete and lies in

(−∞, 0), which is a consequence of the following Lemma 1.

Proof. For θ ∈ Dβ0, we have

(H(θ)− z)Rθ(z) = I + V (φθ(x))Rθ(z). (3.5)

Now assume z ∈ i(R,∞), note that θ ∈ Dβ0 =⇒ −β0 < a(θ) < β0, we have

−2a(θ) + π/4 < arg z < 2π − 2a(θ)− π/4, for all θ ∈ Dβ0.

Using (3.3), we see that Rθ(z) = O(1/|z|) : L2(Rn) → L2(Rn) for all z ∈ i(R,∞) and

θ ∈ Dβ0. Recalling φθ(R
n) ⊂ Rn ∪ CR

β0
and V ∈ L∞(Rn ∪ CR

β0
), we conclude that

sup
z∈i(R,∞)

‖V (φθ(x))Rθ(z)‖L2(Rn)→L2(Rn) = O(R−1), uniformly for θ ∈ Dβ0.

Then for R ≫ 1, I + V (φθ(x))Rθ(z) is invertible using the Neumann series:

(I + V (φθ(x))Rθ(z))
−1 =

∞
∑

j=0

(V (φθ(x))Rθ(z))
j .

Hence H(θ)− z is invertible by (3.5), for all z ∈ i(R,∞).

For the essential spectrum σess(H(θ)), note that σess(p
2
θ) = e−2ia(θ)[0,∞) in Propo-

sition 5, by the invariance under compact perturbations, it suffices to show that

V (φθ(x)) is p
2
θ-compact, i.e. V (φθ(x)) : D(p2θ) = H2(Rn) → L2(Rn) is compact. Since

H2(BRn(0, R)) ⋐ L2(BRn(0, R)), ∀R > 0, and V ◦φθ ∈ L∞(Rn), V (φθ(x)) → 0, x →
∞ by (1.1), it is easy to see the compactness of V (φθ(x)) : H2(Rn) → L2(Rn). �

Now we state the main result in this section, in which we identify the resonances

defined in Definition 4 as the eigenvalues of certain spectral deformed operators H(θ).
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Lemma 1. Let H = −∆+V be a self-adjoint Schrödinger operator with a real-valued

potential V satisfying our assumptions as in §1. Then for any θ ∈ Dβ0 ∩C+, we have:

• For f, g ∈ A, the function

Ff,g(z) ≡ 〈f, RH(z)g〉, (3.6)

defined for Im z > 0, has a meromorphic continuation across [0,∞) into S−
θ ≡

C \ e−2ia(θ)[0,∞).

• The poles of the meromorphic continuations of all matrix elements Ff,g(z) into

S−
θ are eigenvalues of the operator H(θ).

Proof. With Ff,g(z) defined in (3.6), the assumption on V implies that Ff,g is analytic

on C+ ≡ {z ∈ C : Im z > 0}. Fix z ∈ C+. For θ ∈ Dβ0 ∩R, Uθ is unitary and thus we

can write

Ff,g(z) = 〈Uθf, (UθRH(z)U
−1
θ )Uθg〉 = 〈Uθf, RH(θ)(z)Uθg〉. (3.7)

Proposition 7 implies that θ ∈ Dβ0 → RH(θ)(z) is an analytic map provided z ∈
i(R,∞). Since we can write Uθ̄f instead of Uθf in (3.7), we have

θ ∈ Dβ0 → Ff,g(z; θ) ≡ 〈Uθ̄f, RH(θ)(z)Uθg〉 (3.8)

is an analytic map provided z ∈ i(R,∞). Hence for any z ∈ i(R,∞), we have

Ff,g(z; θ) = Ff,g(z), ∀ θ ∈ Dβ0,

since this is true for all θ ∈ Dβ0 ∩ R. Now fix any θ ∈ Dβ0 ∩ C+, Proposition 7

guarantees that Ff,g(z; θ) can be meromorphically continued from i(R,∞) to S−
θ since

σess(H(θ)) ∩ S−
θ = ∅. We have shown that Ff,g(z; θ) = Ff,g(z), z ∈ i(R,∞), then

by the identity principle for meromorphic functions, we conclude that Ff,g(z; θ) is a

meromorphic continuation of Ff,g(z) from C
+ to S−

θ .

Recalling that Ff,g(z; θ) = 〈Uθ̄f, (H(θ) − z)−1Uθg〉 and that UθA, Uθ̄A are both

dense in L2(Rn), thus if H(θ) has an eigenvalue at λθ ∈ S−
θ , there must exist f, g ∈ A

such that λθ is a pole of Ff,g(z; θ). Conversely, if Ff,g(z; θ) has a pole λθ ∈ S−
θ , then it

must be an eigenvalue of H(θ). �

Remark: For nonzero resonance λ of H , we can define its multiplicity as the (alge-

braic) multiplicity of λ as an eigenvalue of some H(θ). More precisely, let λ ∈ {z :

−2β0 < arg z < 3π/2 + 2β0} be a resonance of H , there exists θ ∈ Dβ0 ∩C+ such that

−2a(θ) < arg λ. Lemma 1 implies that λ is also an eigenvalue of H(θ), then we define

the multiplicity of resonance λ as follows:

m(λ) := mθ(λ) ≡ − 1

2πi
tr

∮

λ

(H(θ)− z)−1dz, (3.9)

where the integral is over a positively oriented circle enclosing λ and containing no

eigenvalues of H(θ) other than λ. To see that the multiplicity m(λ) is well-defined,
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we need to show that m(λ) does not depend on the choice of θ. Assume θ0, θ1 ∈ Dβ0

satisfy −2a(θ0) ≤ −2a(θ1) < arg λ, let θt = (1 − t)θ0 + tθ1 then −2a(θt) < arg λ for

all t ∈ [0, 1]. Let Cλ be a positively oriented circle enclosing λ with sufficiently small

radius such that Cλ ⊂ {z : arg z > −2a(θ1)} and contains no resonances of H other

than λ. Therefore, Cλ contains no eigenvalues of H(θt) other than λ for all t ∈ [0, 1]

as a consequence of Lemma 1. Now we have

mθt(λ) = − 1

2πi
tr

∫

Cλ

(H(θt)− z)−1dz, t ∈ [0, 1].

Hence mθt(λ) depends continuously on t which implies that mθt(λ) must be a constant

as it is integer-valued. In particular, we have mθ0(λ) = mθ1(λ), thus m(λ) is well-

defined.

4. Eigenvalues and complex scaling

In this section we will show that the eigenvalues of Hε ≡ −∆−iεx2+V are invariant

under complex scaling, in other words, these eigenvalues are the same as the eigenvalues

of

Hε(θ) := UθHεU
−1
θ = p2θ − iεφθ(x)

2 + V (φθ(x)), θ ∈ Dβ0 ∩ C
+.

First we recall some basic properties about the Davies harmonic oscillator and its

deformation, see [Z2, §3] for details. The operator Hε,γ := −∆ + e−iγεx2, ε > 0,

0 ≤ γ < π, was used by Davies [Da1] to illustrate properties of non-normal differential

operators. We are more interested in the deformations of Hε,γ under complex scaling.

Let

Qε,θ = −∆θ − iεx2
θ, where xθ = z|Γθ

be a deformed operator on Γθ as in [Z2, §3]. In view of (3.4), we have

p2θ − iεφθ(x)
2 = UθQε,a(θ)U

−1
θ , θ ∈ Dβ0. (4.1)

Hence we can study the spectrum and the resolvents of p2θ− iεφθ(x)
2 using the relevant

results about Qε,a(θ). We recall [Z2, Lemma 4.] that σ(Qε,a(θ)) =
√
εe−iπ/4(n + 2|Nn

0 |)
for θ ∈ Dβ0, then by (4.1) we have

Proposition 8. For θ ∈ Dβ0, ε > 0, the spectrum of p2θ − iεφθ(x)
2 is independent of

θ and given by
√
εe−iπ/4(n+ 2|Nn

0 |).

For the resolvents of p2θ − iεφθ(x)
2:

Rε,θ(z) := (p2θ − iεφθ(x)
2 − z)−1, θ ∈ Dβ0, (4.2)

we recall [Z2, Lemma 5.] that for δ > 0, −π/8 < θ < π/8, we have

(Qε,θ − z)−1 = Oδ(1/|z|) : L2(Γθ) → L2(Γθ), −2θ + δ < arg z < 3π/2 + 2θ − δ,

uniformly for 0 < ε < ε0, where ε0 > 0 is a constant. Using (4.1), we have
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Proposition 9. Let θ ∈ Dβ0, δ > 0, then uniformly for 0 < ε < ε0, we have

Rε,θ(z) = Oδ(1/|z|) : L2(Rn) → L2(Rn), −2a(θ)+δ < arg z < 3π/2+2a(θ)−δ. (4.3)

Now we state the main result about the eigenvalues of Hε :

Lemma 2. For any θ ∈ Dβ0, 0 < ε < ε0,

z 7→ RHε(θ)(z) ≡ (Hε(θ)− z)−1, −π/4 < arg z < 7π/4,

is a meromorphic family of operators on L2(Rn) with poles of finite rank. Furthermore,

the poles of (Hε(θ)− z)−1 do not depend on θ ∈ Dβ0 and coincide, with agreement of

multiplicities, with the poles of (Hε − z)−1.

Proof. For fixed θ ∈ Dβ0, one can compute

(Hε(θ)− z)Rε,θ(z) = I + V (φθ(x))Rε,θ(z),

then we obtain from (4.3) that

RHε(θ)(z) = Rε,θ(z)(I + V (φθ(x))Rε,θ(z))
−1,

−2a(θ) + δ < arg z < 3π/2 + 2a(θ)− δ, |z| ≫ 1,
(4.4)

where for large |z|, I + V (φθ(x))Rε,θ(z) is invertible by a Neumann series argument.

Note that Rε,θ(z) : L2(Rn) → H2(Rn), arg z 6= −π/4 by Proposition 8, recalling

that V (φθ(x)) : H2(Rn) → L2(Rn) is compact (see the proof of Proposition 7), we

conclude that z 7→ V (φθ(x))Rε,θ(z) is an analytic family of compact operators for

−π/4 < z < 7π/4. Hence z 7→ (I + V (φθ(x))Rε,θ(z))
−1 is a meromorphic family of

operators in the same range of z. In particular z 7→ RHε(θ)(z), −π/4 < z < 7π/4 is a

meromorphic family of operators on L2(Rn) with poles of finite rank.

The poles and their multiplicities are independent of θ. For that we modify the

proof of Lemma 1 and define matrix elements:

Gf,g(z) = 〈f, (Hε − z)−1g〉,
and

Gf,g(z; θ) = 〈Uθ̄f, (Hε(θ)− z)−1Uθg〉,
for all f, g ∈ A.

Note that −2a(θ)+π/4 < π/2 < 3π/2+2a(θ)−π/4 since −β0 < a(θ) < β0, θ ∈ Dβ0,

using (4.3) and Neumann series argument, Hε(θ)− z is invertible at z = iρ, ρ ≫ 1 for

each θ ∈ Dβ0 . Like (3.8), we have

θ ∈ Dβ0 → Gf,g(z; θ) ≡ 〈Uθ̄f, RH(θ)(z)Uθg〉
is an analytic map provided z = iρ, ρ ≫ 1. Hence we have

Gf,g(z; θ) = Gf,g(z), ∀ θ ∈ Dβ0 , z = iρ, ρ ≫ 1, (4.5)



10 HAOREN XIONG

since this is true for all θ ∈ Dβ0 ∩ R. Now fix any θ ∈ Dβ0 , note that Gf,g(z) and

Gf,g(z; θ) are both meromorphic in −π/4 < z < 7π/4, we conclude that

Gf,g(z; θ) = Gf,g(z), −π/4 < z < 7π/4, (4.6)

by (4.5) and the identity principle of meromorphic functions.

Now argue as in the end of the proof of Lemma 1: if (Hε − z)−1 has a pole at

λθ ∈ C\e−iπ/4[0,∞), then there must exist f, g ∈ A such that λθ is a pole of Gf,g(z; θ),

by (4.6), λθ is also a pole of Gf,g(z) thus (Hε(θ)− z)−1 must have a pole at λθ and vise

versa. Hence for any θ ∈ Dβ0, the poles of (Hε(θ) − z)−1 in C \ e−iπ/4[0,∞) coincide

the poles of (Hε − z)−1 in C \ e−iπ/4[0,∞).

To show the agreement of multiplicities, for any pole λ of (Hε(θ)− z)−1, the multi-

plicity of λ is defined by

mε,θ(λ) = − 1

2πi
tr

∮

λ

(Hε(θ)− z)−1dz,

where the integral is over a positively oriented circle independent of θ enclosing λ

and containing no poles other than λ. Since mε,θ(λ) is continuous on θ ∈ Dβ0 and

integer-valued, it must be independent of θ ∈ Dβ0. Hence we have

mε,θ(λ) = mε,0(λ) = − 1

2πi
tr

∮

λ

(Hε − z)−1dz

which is the multiplicity of λ as a pole of (Hε − z)−1. �

5. Meromorphic continuation

In this section we will introduce a new way to express the meromorphic continuations

of resolvents RH(θ)(z) and RHε(θ)(z) in a given region Ω ⋐ {z : −2a(θ) < arg z <

3π/2+2a(θ)}, which is crucial in the proof of Theorem 1. For that we will first review

some properties about Rθ(z) and the weighted L2 space, 〈x〉−2L2(Rn).

Lemma 3. Let 〈x〉−2L2(Rn) be a weighted L2 space with the norm

‖u‖〈x〉−2L2(Rn) = ‖〈x〉2u‖L2(Rn). (5.1)

Then H2(Rn) ∩ 〈x〉−2L2(Rn) is compactly embedded in L2(Rn).

Proof. Let un ∈ H2(Rn) ∩ 〈x〉−2L2(Rn) with ‖un‖H2(Rn) ≤ 1 and ‖〈x〉2un‖L2(Rn) ≤ 1.

For some r > 0 to be decided, we have
∫

|x|≥r

|un(x)|2dx ≤ 〈r〉−4

∫

|x|≥r

〈x〉4|un(x)|2dx ≤ 〈r〉−4‖〈x〉2un‖2L2(Rn) = 〈r〉−4.
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Then we choose r sufficientlt large such that
∫

|x|≥r
|un(x)|2dx < 1/8 for all n. Since

H2(B(0, r) ⋐ L2(B(0, r), there exists subsequence {u(1)
n } ⊂ {un} satisfying

∫

B(0,r)

|u(1)
n (x)− u(1)

m (x)|2dx < 1/2, for all n,m.

Hence we have

‖u(1)
n − u(1)

m ‖2L2(Rn) =

∫

B(0,r)

|u(1)
n (x)− u(1)

m (x)|2dx+

∫

|x|≥r

|u(1)
n (x)− u(1)

m (x)|2dx

< 1/2 +

∫

|x|≥r

(2|u(1)
n (x)|2 + 2|u(1)

m (x)|2)dx

< 1/2 + 2/8 + 2/8 = 1.

By the same argument, we can find {u(1)
n } ⊃ · · · ⊃ {u(j)

n } ⊃ · · · with

‖u(j)
n − u(j)

m ‖L2(Rn) < 1/j, for all n,m.

Then the subsequence {u(j)
j } ⊂ {un} is a Cauchy sequence in L2(Rn). �

Lemma 4. Fix θ ∈ Dβ0 ∩ C+, Rθ(z) is an analytic family of operators 〈x〉−2L2 →
〈x〉−2L2 for −2a(θ) < arg z < 2π − 2a(θ). Furthermore, if Ω ⋐ {z : −2a(θ) < arg z <

2π − 2a(θ)} then there exists C = CΩ,θ such that

‖Rθ(z)‖〈x〉−2L2→〈x〉−2L2 ≤ C, z ∈ Ω.

Proof. In view of (2.1) and (2.9), we have

|x|/2 < |φθ(x)| = |1 + θh(|x|)||x| < 3|x|/2 =⇒ 〈x〉/2 < 〈φθ(x)〉 < 3〈x〉/2.

Then it is equivalent to prove the lemma with 〈φθ(x)〉 replacing 〈x〉. We recall Propo-

sition 3 to write

〈φθ(x)〉2Rθ(z)〈φθ(x)〉−2 = Ua(θ)〈xa(θ)〉2(−∆a(θ) − z)−1〈xa(θ)〉−2U−1
a(θ),

where xa(θ) is the coordinate on Γa(θ). Then it suffices to show that, for any 0 < α < β0,

〈w〉2(−∆α − λ2)−1〈w〉−2 : L2(Γα) → L2(Γα), Im(eiαλ) > 0, (5.2)

is analytic with uniformly bounded norm provided λ in any compact subset of {λ ∈
C : Im(eiαλ)}, where w denotes the coordinate on Γα. To prove (5.2), consider the

integral kernel of that operator:

K(λ, w1, w2) = 〈w1〉2R0(λ, w1, w2)〈w2〉−2, w1, w2 ∈ Γα, (5.3)
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where R0(λ, w1, w2) is the integral kernel of (−∆α − λ2)−1 : L2(Γα) → L2(Γα). It is

easy to see that

|K(λ, w1, w2)| ≤ (1 + |w1|2) |R0(λ, w1, w2)| 〈w2〉−2

≤ 2(1 + |w1 − w2|2 + |w2|2) (1 + |w2|2)−1 |R0(λ, w1, w2)|
≤ 2(1 + |w1 − w2|2)|R0(λ, w1, w2)|.

(5.4)

To introduce the explicit formula of R0(λ, w1, w2), we recall that one can define ((w1−
w2) · (w1 − w2))

1/2 for w1, w2 ∈ Γα, see [DyZ2, §4.5]. Then we can write

R0(λ, w1, w2) = Cnλ
n−2(λ((w1−w2)·(w1−w2))

1/2)−
n−2
2 H

(1)
n
2
−1(λ((w1−w2)·(w1−w2))

1/2)

whereH
(1)
k denote the Hankel functions of the first kind, and we can estimate |R0(λ, w1, w2)|

as follows:

|R0(λ, w1, w2)| ≤
Pn(λ((w1 − w2) · (w1 − w2))

1/2)

(((w1 − w2) · (w1 − w2))1/2)n−2
e− Imλ((w1−w2)·(w1−w2))1/2 (5.5)

where Pn is a polynomial of degree (n − 3)/2, see [GaSm, §2.2] and [DyZ2, §4.5] for
details. Using (2.11), it is easy to see that for any δ small, there exists Cδ > 0 such

that | arg((w1 − w2) · (w1 − w2))
1/2 − α| < δ provided |w1 − w2| > Cδ. Note that

0 < arg λ+α < π, for every λ, we can choose δ = δλ such that 2δ < arg λ+α < π−2δ,

then for |z − w| > Cλ, we have

δ < arg λ((w1 − w2) · (w1 − w2))
1/2 < π − δ,

and thus

e− Imλ((w1−w2)·(w1−w2))1/2 < e−cλ|w1−w2|, cλ > 0, if |w1 − w2| > Cλ. (5.6)

Then using (5.4), (5.5) and (5.6), we conclude that

sup
w1∈Γα

∫

Γα

|K(λ, w1, w2)|dw1 < Mλ, sup
w2∈Γα

∫

Γα

|K(λ, w1, w2)|dz < Mλ.

By Schur criterion, we proved (5.2), the analyticity in λ is easy to see using the explicit

formula of R0(λ, w1, w2). If λ ∈ K ⋐ {λ ∈ C : Im(eiαλ)}, then there exist cK and CK

such that

e− Imλ((w1−w2)·(w1−w2))1/2 < e−cK |w1−w2|, cK > 0, if |w1 − w2| > CK .

Follow the above argument, there exists M = MK > 0 such that

‖〈w〉2(−∆α − λ2)−1〈w〉−2‖L2(Γα)→L2(Γα) < MK , for all λ ∈ K,

which completes the proof. �

Now we state the main result of this section:
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Lemma 5. Fix any θ ∈ Dβ0 ∩ C+ and Ω ⋐ {z : −2a(θ) < arg z < 3π/2 + 2a(θ)} ,

there exists χ ∈ C∞
c (Rn), χ ≡ 1 on B(0, T ) for some T > 0 such that for 0 ≤ ε < ε0,

Hε(θ)− χV − z is invertible in Ω and

z 7→ (I +RHε(θ)−χV (z)χV )−1, z ∈ Ω,

is a meromorphic family of operators on L2(Rn) with poles of finite rank, where we

write RHε(θ)−χV (z) = (Hε(θ)− χV − z)−1 for simplicity. Moreover,

mε,θ(z) :=
1

2πi
tr

∮

z

(I +RHε(θ)−χV (w)χV )−1∂w(RHε(θ)−χV (w)χV )dw, (5.7)

where the integral is over a positively oriented circle enclosing z and containing no

poles other than possibly z, satisfies

mε,θ(z) =
1

2πi
tr

∮

z

(w −Hε(θ))
−1dw, 0 ≤ ε < ε0, (5.8)

where H0(θ) = H(θ).

Proof. We modify the argument in [Z2, §4] to our setting. First there exists δ = δΩ
such that Ω ⊂ Cδ := {z : −2a(θ) + δ < arg z < 3π/2 + 2a(θ) − δ, |z| > δ}, we recall

(3.3) and (4.3) that uniformly for 0 ≤ ε < ε0, we have

Rε,θ(z) = Oδ(1/|z|) : L2(Rn) → L2(Rn), z ∈ Cδ. (5.9)

Hence ‖Rε,θ(z)‖L2(Rn)→L2(Rn) < Cδ, ∀z ∈ Cδ, for some Cδ > 0. In view of (1.1), for T

sufficiently large, we have ‖(1− χ)V ‖L∞ < 1/2Cδ and thus

‖Rε,θ(z)(1 − χ)V ‖L2(Rn)→L2(Rn) < 1/2, for all z ∈ Cδ. (5.10)

Then (I+Rε,θ(z)(1−χ)V ) is invertible by the Neumann series argument, which implies

that Hε(θ)− χV − z is invertible and

RHε(θ)−χV (z) = (Hε(θ)−χV −z)−1 = (I+Rε,θ(z)(1−χ)V )−1Rε,θ(z), ∀z ∈ Cδ. (5.11)

Since χV ∈ L∞(Rn), (5.9) and (5.11) imply that for z ∈ Cδ, |z| ≫ 1, both I +

χV RHε(θ)−χV (z) and I + RHε(θ)−χV (z)χV are invertible by the Neumann series argu-

ment. Hence we have

RHε(θ)(z) = RHε(θ)−χV (z)(I + χV RHε(θ)−χV (z))
−1

= RHε(θ)−χV (z)

∞
∑

j=0

(−1)j(χV RHε(θ)−χV (z))
j

= RHε(θ)−χV (z)

(

I − χV

∞
∑

j=0

(−1)j(RHε(θ)−χV (z)χV )j RHε(θ)−χV (z)

)

= RHε(θ)−χV (z)[I − χV (I +RHε(θ)−χV (z)χV )−1RHε(θ)−χV (z)],

(5.12)
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Using (5.11), we have

RHε(θ)−χV (z)χV = (I +Rε,θ(z)(1 − χ)V )−1Rε,θ(z)χV.

For ε > 0, Rε,θ(z) : L2(Rn) → H2(Rn) ∩ 〈φθ(x)〉−2L2(Rn), then Lemma 3 implies

that Rε,θ(z) : L2(Rn) → L2(Rn) is compact. For ε = 0, note that χV : L2(Rn) →
〈x〉−2L2(Rn), by Lemma 4 we have Rθ(z)χV : L2(Rn) → H2(Rn) ∩ 〈x〉−2L2(Rn),

then Lemma 3 implies that Rθ(z)χV : L2(Rn) → L2(Rn) is compact. Hence we can

conclude that z 7→ RHε(θ)−χV (z)χV is an analytic family of compact operators for

z ∈ Cδ, 0 ≤ ε < ε0, and thus z 7→ (I +RHε(θ)−χV (z)χV )−1 is a meromorphic family of

operators in the same range of z.

Then we recall Lemma 1 and 2 that RHε(θ)(z) is meromorphic in −2a(θ) < arg z <

3π/2 + 2a(θ), by the identity principle of meromorphic operators, we conclude that

(5.12) holds for all z ∈ Cδ in the sense of meromorphic family of operators.

To obtain the multiplicity formula, we assume that z ∈ Ω, then there exists a

neighborhood z ∈ U ⊂ Ω and finite rank operators Aj, 1 ≤ j ≤ J such that

(I +RHε(θ)−χV (w)χV )−1 −
J
∑

j=1

Aj

(w − z)j
is holomorphic in w ∈ U.

Let Cz ⊂ U be a positively oriented circle enclosing z and containing no poles of

(I + RHε(θ)−χV (w)χV )−1 other than possibly z, thus it also contains no poles of (w −
Hε(θ))

−1 other than possibly z as a consequence of (5.12). On the one hand, we can

compute

mε,θ(z) =
1

2πi
tr

∫

Cz

(I +RHε(θ)−χV (w)χV )−1∂w(RHε(θ)−χV (w)χV )dw

=
1

2πi
tr

∫

Cz

(I +RHε(θ)−χV (w)χV )−1RHε(θ)−χV (w)
2χV dw

=
1

2πi
tr

∫

Cz

J
∑

j=1

AjRHε(θ)−χV (w)
2χV

(w − z)j
dw

=
J
∑

j=1

1

(j − 1)!
tr ∂j−1

z (AjRHε(θ)−χV (z)
2χV )

=
J
∑

j=1

j−1
∑

k=0

1

k!(j − 1− k)!
trAj ∂

k
zRHε(θ)−χV (z) ∂

j−1−k
z RHε(θ)−χV (z)χV.

(5.13)



RESONANCES AS VISCOSITY LIMITS FOR EXTERIOR DILATION ANALYTIC POTENTIALS15

On the other hand, by (5.12) we have

1

2πi
tr

∮

z

(w −Hε(θ))
−1dw

=
1

2πi
tr

∫

Cz

RHε(θ)−χV (w)χV (I +RHε(θ)−χV (w)χV )−1RHε(θ)−χV (w)dw

=
1

2πi
tr

∫

Cz

J
∑

j=1

RHε(θ)−χV (w)χV AjRHε(θ)−χV (w)

(w − z)j
dw

=
J
∑

j=1

1

(j − 1)!
tr ∂j−1

z (RHε(θ)−χV (z)χV AjRHε(θ)−χV (z))

=
J
∑

j=1

j−1
∑

k=0

1

k!(j − 1− k)!
tr ∂j−1−k

z RHε(θ)−χV (z)χV Aj ∂
k
zRHε(θ)−χV (z).

(5.14)

Now we compare (5.13) and (5.14). Since Aj factors have finite rank, we can apply

cyclicity of the trace to obtain the multiplicity formula (5.8).

�

6. Proof of convergence

The proof of convergence is based on Lemma 1, Lemma 2, Lemma 5 and the following

lemma:

Lemma 6. Fix any θ ∈ Dβ0 ∩C+ and Ω ⋐ {z : −2a(θ) < arg z < 3π/2+2a(θ)}, there
exists χ ∈ C∞

c (Rn), χ ≡ 1 on B(0, T ) for some T > 0 such that for 0 < ε < ε0,

Tε,θ(z) := (Hε(θ)− χV − z)−1φθ(x)
2(H(θ)− χV − z)−1χV

is an analytic family of operators: L2(Rn) → L2(Rn). Furthermore, there exists C =

CΩ,θ such that

‖Tε,θ(z)‖L2(Rn)→L2(Rn) ≤ C, z ∈ Ω, uniformly for 0 < ε < ε0. (6.1)

Proof. We recall the proof of Lemma 5 that for T sufficiently large, Hε(θ)− χV − z is

invertible, then (5.10) and (5.11) imply that

‖(Hε(θ)− χV − z)−1‖L2(Rn)→L2(Rn) ≤ CΩ, z ∈ Ω,

for some CΩ > 0. Hence it suffices to prove

‖φθ(x)
2(H(θ)− χV − z)−1χV ‖L2(Rn)→L2(Rn) ≤ CΩ, z ∈ Ω. (6.2)

By Lemma 4, we have ‖Rθ(z)‖〈x〉−2L2→〈x〉−2L2 ≤ C. We can choose T sufficiently large

such that (5.10) still holds and ‖(1− χ)V ‖L∞ < 1/2C, then we have

‖Rθ(z)(1− χV )‖〈x〉−2L2→〈x〉−2L2 < 1/2, z ∈ Ω.
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Hence (I +Rθ(z)(1−χ)V )−1 : L2 → L2 defined by the Neumann series in the proof of

Lemma 5 also maps 〈x〉−2L2 to 〈x〉−2L2 by the same Neumann series and we have

‖(I +Rθ(z)(1− χ)V )−1‖〈x〉−2L2→〈x〉−2L2 < 2, z ∈ Ω. (6.3)

Since χV : L2 → 〈x〉−2L2 with the operator norm bounded by ‖〈x〉2χV ‖L∞ = CΩ, by

Lemma 4, (5.11) and (6.3) we conclude that

‖(H(θ)− χV − z)−1χV ‖L2→〈x〉−2L2

= ‖(I +Rθ(z)(1 − χ)V )−1Rθ(z)χV ‖L2→〈x〉−2L2

≤ ‖(I +Rθ(z)(1− χ)V )−1Rθ(z)‖〈x〉−2L2→〈x〉−2L2‖χV ‖L2→〈x〉−2L2

≤ CΩ,

which implies (6.2). �

Now we state the result about the convergence of eigenvalues of the deformed oper-

ator Hε(θ):

Theorem 2. Fix θ ∈ Dβ0 ∩ C+ and Ω ⋐ {z : −2a(θ) < arg z < 3π/2 + 2a(θ)}, there
exists δ0 = δ0(Ω) satisfying the following:

For any 0 < δ < δ0 there exists ε′ > 0 such that for any z ∈ Ω with mθ(z) > 0 and

0 < ε < ε′, Hε(θ) has mθ(z) eigenvalues in B(z, δ), where mθ(z) is the multiplicity of

the eigenvalue of H(θ) at z - see (3.9).

Proof. Since the eigenvalues of H(θ) are isolated and Ω is compact, there are finite

many z ∈ Ω with mθ(z) > 0, we denote them by z1, . . . , zJ . Then we can choose δ0
such that B(zj , δ0), j = 1, . . . , J are disjoint.

Now we fix δ < δ0, by Lemma 5, I+RH(θ)−χV (w)χV is invertible in Ω\{z1, . . . , zJ},
thus we have

‖(I +RH(θ)−χV (w)χV )−1‖L2→L2 < C(δ), w ∈ ∂B(z, δ), for all z ∈ {z1, . . . , zJ},
for some C(δ) > 0. We note that in the notation of Lemma 6,

I +RHε(θ)−χV (w)χV − (I +RH(θ)−χV (w)χV ) = iεTε,θ(w).

Hence there exists 0 < ε′ < ε0 such that for any ε < ε′,

‖(I +RH(θ)−χV (w)χV )−1(I +RHε(θ)−χV (w)χV − (I +RH(θ)−χV (w)χV ))‖ < 1

on ∂B(z, δ). Now we apply Gohberg-Sigal-Rouché theorem, see [GS] and [DyZ2, Ap-

pendix C.] to obtain that

1

2πi
tr

∫

∂B(z,δ)

(I +RHε(θ)−χV (w)χV )−1∂w(RHε(θ)−χV (w)χV )dw

=
1

2πi
tr

∫

∂B(z,δ)

(I + RH(θ)−χV (w)χV )−1∂w(RH(θ)−χV (w)χV )dw.
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Then we recall (5.8) to conclude that

1

2πi
tr

∫

∂B(z,δ)

(w −Hε(θ))
−1dw = mθ(z),

which implies that Hε(θ) has mθ(z) eigenvalues in B(0, δ). �

Finally, we can give the proof of Theorem 1.

Proof. We assume from now on that ε < ε0. Fix any Ω ⋐ {z : −2β0 < arg z <

3π/2 + 2β0}, we can choose θ ∈ Dβ0 ∩ C+ such that

Ω ⋐ {z : −2a(θ) < arg z < 3π/2 + 2a(θ)}.
In view of Lemma 1, we see that {zj}∞j=1, the resonances of H in Ω, can be identified

as the eigenvalues of H(θ), denoted by {zθ,j}∞j=1. Similarly, Lemma 2 guarantees that

{zj(ε)}∞j=1, the eigenvalues of Hε in {z : −2a(θ) < arg z < 3π/2 + 2a(θ)}, are the

eigenvalues of Hε(θ), denoted by {zθ,j(ε)}∞j=1. Hence it suffices to show

zθ,j(ε) → zθ,j, ε → 0+, uniformly on Ω, (6.4)

which is a direct result of Theorem 2. �
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[DeSZ] N. Dencker, J. Sjöstrand, and M. Zworski, Pseudospectra of semiclassical differential opera-

tors, Comm. Pure Appl. Math 57 (2004), 384–415.

[DyZ1] S. Dyatlov and M. Zworski, Stochastic stability of Pollicott–Ruelle resonances, preprint,

arXiv:1407.8531.

[DyZ2] Semyon Dyatlov and Maciej Zworski.Mathematical theory of scattering resonances. American

Mathematical Society, 2019.

[GaSm] Jeffrey Galkowski and Hart F Smith. Restriction bounds for the free resolvent and resonances

in lossy scattering. International Mathematics Research Notices, 2015(16):7473–7509, 2014.

[GS] IC u Gohberg and EI Sigal. An operator generalization of the logarithmic residue theorem and
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