Worksheet 9 (Feb. 10)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- Inverse of linear transformation, inverse of matrix;
- determinant of matrix.

METHODS AND IDEAS

- A transformation is invertible if and only if it is bijective, i.e. both one-to-one and onto.
- To compute the inverse of a matrix A, apply row reduction

$$
\left(\begin{array}{ll}
A & I_{n}
\end{array}\right) \rightsquigarrow\left(\begin{array}{ll}
I_{n} & A^{-1}
\end{array}\right) .
$$

i.e., when A is reduced to I_{n}, what appears on RHS is the A^{-1}.

Theorem 1. [Equivalent conditions for invertibility]
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation and A be its standard matrix, then all the following statements are equivalent conditions of invertibility of T :
(linear transformation) $\Leftrightarrow T$ is invertible $\Leftrightarrow T$ is bijective

$$
\begin{aligned}
& \text { (vector) } \Leftrightarrow T\left(\mathbf{e}_{1}\right), \ldots, T\left(\mathbf{e}_{n}\right) \text { are linearly independent and span the entire } \mathbb{R}^{n} \\
& \text { (matrix) } \Leftrightarrow A \text { is invertible } \Leftrightarrow A \text { has } n \text { pivots (and thus one in each row } \\
& \text { and each column) } \Leftrightarrow \operatorname{det}(A) \neq 0
\end{aligned}
$$

(linear system) $\Leftrightarrow A \mathbf{x}=\mathbf{b}$ has unique solution for any $\mathbf{b} \in \mathbb{R}^{n}$.

2 Problems

Example 1. Compute the determinants below

$$
\left|\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right|, \quad\left|\begin{array}{ccc}
1 & -1 & 3 \\
2 & 0 & 1 \\
0 & -2 & 4
\end{array}\right|
$$

Example 2. Consider the 2×2 matrices

$$
A=\left(\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right), B=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

(a) Find $A^{-1} B$.
(b) Solve the linear systems $A \mathbf{x}=\mathbf{b}_{1}$ and $A \mathbf{x}=\mathbf{b}_{2}$, for \mathbf{b}_{1} and \mathbf{b}_{2} the two column vectors of B.

Example 3. True or false.
() The product of two invertible matrices is still invertible.
() The composition of two invertible linear transformations is still invertible.
() The inverse of an invertible matrix is invertible.
() An upper-triangular matrix is invertible.
() Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a surjective linear transformation and A be its standard matrix, then the linear system $A \mathbf{x}=\mathbf{b}$ has unique solution for any $\mathbf{b} \in \mathbb{R}^{n}$.
() If $C=A B$ where A is 3×2 and B is 2×3, then C can never be invertible.

