Worksheet 9 (Feb. 10)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- Inverse of linear transformation, inverse of matrix;
- determinant of matrix.

METHODS AND IDEAS

- A transformation is **invertible** if and only if it is **bijective**, i.e. both one-to-one and onto.
- To compute the inverse of a matrix A, apply row reduction

 $\begin{pmatrix} A & I_n \end{pmatrix} \rightsquigarrow \begin{pmatrix} I_n & A^{-1} \end{pmatrix}$.

i.e., when A is reduced to I_n , what appears on RHS is the A^{-1} .

Theorem 1. [Equivalent conditions for invertibility] Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and A be its standard matrix, then all the following statements are equivalent conditions of invertibility of T:

2 Problems

Example 1. Compute the determinants below

$\begin{vmatrix} 2\\5 \end{vmatrix}$	$\begin{vmatrix} 1\\ 3 \end{vmatrix},$	1	-1	3	
		2	0	1	
		0	-2	4	

Example 2. Consider the 2×2 matrices

$$A = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

(a) Find $A^{-1}B$.

(b) Solve the linear systems $A\mathbf{x} = \mathbf{b}_1$ and $A\mathbf{x} = \mathbf{b}_2$, for \mathbf{b}_1 and \mathbf{b}_2 the two column vectors of B.

Example 3. True or false.

- () The product of two invertible matrices is still invertible.
- () The composition of two invertible linear transformations is still invertible.
- () The inverse of an invertible matrix is invertible.
- () An upper-triangular matrix is invertible.
- () Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a surjective linear transformation and A be its standard matrix, then the linear system $A\mathbf{x} = \mathbf{b}$ has unique solution for any $\mathbf{b} \in \mathbb{R}^n$.
- () If C = AB where A is 3×2 and B is 2×3 , then C can never be invertible.