Worksheet 7 (Feb. 5)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- *Recall:* matrix of a linear transformation;
- range and kernel of a linear transformation;
- one-to-one (injective) linear transformation, onto (surjective) linear transformation, bijective linear transformation.

METHODS AND IDEAS

[For the complete version see P7 of the professor's notes of Lecture 6. Let A be an $m \times n$ matrix.]

- Further expanded **criterion** for ≥ 1 solution (existence): The linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m, T(\mathbf{x}) = A\mathbf{x}$ is surjective \Leftrightarrow the linear system $A\mathbf{x} = \mathbf{b}$ is consistent for any $\mathbf{b} \in \mathbb{R}^m$.
- Further expanded criterion for ≤ 1 solution (inconsistency or uniqueness): The linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m, T(\mathbf{x}) = A\mathbf{x}$ is injective \Leftrightarrow the linear system $A\mathbf{x} = \mathbf{b}$ has ≤ 1 solution for any $\mathbf{b} \in \mathbb{R}^m$.

2 Problems

Example 1. Find a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that is

- (a) one-to-one and onto;
- (b) one-to-one but not onto;
- (c) onto but not one-to-one;
- (d) neither one-to-one nor onto.

Example 2. True or false.

- () A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
- () A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if it maps each $\mathbf{x} \in \mathbb{R}^n$ to a unique vector in \mathbb{R}^m .
- () If a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ satisfies $T(\mathbf{e}_1 + \mathbf{e}_n) = \mathbf{0}$, then T is not injective.
- () A linear transformation is onto if and only if its matrix has a pivot in each row.
- () A linear transformation $T:\mathbb{R}^n\to\mathbb{R}^m$ is surjective if n>m.
- () A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is surjective only if n > m.

Example 3. 'Find values of c' cliché. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation associated to the matrix

$$A = \begin{pmatrix} 3 & 1 & 3 \\ c & 2 & 6 \\ 1 & 0 & -1 \end{pmatrix}.$$

(1) When is T injective? (2) When is T surjective?