# Worksheet 7 (Feb. 5) 

DIS 119/120 GSI Xiaohan Yan

## 1 Review

## DEFINITIONS

- Recall: matrix of a linear transformation;
- range and kernel of a linear transformation;
- one-to-one (injective) linear transformation, onto (surjective) linear transformation, bijective linear transformation.


## METHODS AND IDEAS

[For the complete version see P 7 of the professor's notes of Lecture 6. Let $A$ be an $m \times n$ matrix.]

- Further expanded criterion for $\geqslant 1$ solution (existence): The linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, T(\mathbf{x})=A \mathbf{x}$ is surjective $\Leftrightarrow$ the linear system $A \mathbf{x}=\mathbf{b}$ is consistent for any $\mathbf{b} \in \mathbb{R}^{m}$.
- Further expanded criterion for $\leqslant 1$ solution (inconsistency or uniqueness): The linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, T(\mathbf{x})=A \mathbf{x}$ is injective $\Leftrightarrow$ the linear system $A \mathbf{x}=\mathbf{b}$ has $\leqslant 1$ solution for any $\mathbf{b} \in \mathbb{R}^{m}$.


## 2 Problems

Example 1. Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that is
(a) one-to-one and onto;
(b) one-to-one but not onto;
(c) onto but not one-to-one;
(d) neither one-to-one nor onto.

Example 2. True or false.
( ) A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is completely determined by its effect on the columns of the $n \times n$ identity matrix.
( ) A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is one-to-one if it maps each $\mathbf{x} \in \mathbb{R}^{n}$ to a unique vector in $\mathbb{R}^{m}$.
( ) If a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfies $T\left(\mathbf{e}_{1}+\mathbf{e}_{n}\right)=\mathbf{0}$, then $T$ is not injective.
( ) A linear transformation is onto if and only if its matrix has a pivot in each row.
( ) A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is surjective if $n>m$.
( ) A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is surjective only if $n>m$.

Example 3. 'Find values of $c$ ' cliché. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation associated to the matrix

$$
A=\left(\begin{array}{ccc}
3 & 1 & 3 \\
c & 2 & 6 \\
1 & 0 & -1
\end{array}\right)
$$

(1) When is $T$ injective? (2) When is $T$ surjective?

