Worksheet 6 (Feb. 3)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- Trichotomy of linear systems (vector language);
- linear transformation, domain, codomain;
- standard basis of \mathbb{R}^{n}, matrix of a linear transformation.

METHODS AND IDEAS

- A map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation of vectors \Leftrightarrow it is a matrix multiplication, i.e. we can find an $m \times n$ matrix such that $f(\mathbf{x})=A \mathbf{x}$, for any $\mathbf{x} \in \mathbb{R}^{n}$. The columns of A are exactly $f\left(\mathbf{e}_{1}\right), f\left(\mathbf{e}_{2}\right), \cdots, f\left(\mathbf{e}_{n}\right)$.
- Thus in particular, the linear transformation f is completely determined by the images $f\left(\mathbf{e}_{1}\right), f\left(\mathbf{e}_{2}\right), \cdots, f\left(\mathbf{e}_{n}\right)$ of the standard basis of $\mathbb{R}^{n}!!!$

2 Problems

Example 1. Determine if the following maps are linear transformations.
(1) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ the rotation of vectors counterclockwise by $\pi / 3$ about the origin.
(2) $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ sending any vector \mathbf{x} to $\mathbf{x}+\mathbf{e}_{1}$.
(3) $h: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ with

$$
h\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x^{2}+y^{2}}{z}
$$

(4) $k: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
g(x)=|x|
$$

Example 2. Compare the two linear transformations

$$
\begin{gathered}
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
f\binom{x}{y}=x, \quad g\binom{x}{y}=\binom{x}{0} .
\end{gathered}
$$

Why are they different linear transformations?

Example 3. Assume that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation. Consider the following vectors

$$
\mathbf{e}_{1}=\binom{1}{0}, \mathbf{e}_{2}=\binom{0}{1}, \mathbf{a}=\binom{-1}{2}, \mathbf{b}=\binom{1}{1}, \mathbf{u}=\left(\begin{array}{c}
1 \\
3 \\
-1
\end{array}\right), \mathbf{v}=\left(\begin{array}{l}
2 \\
3 \\
3
\end{array}\right) .
$$

(1) Assume further that $T\left(\mathbf{e}_{1}\right)=\mathbf{u}$ and $T\left(\mathbf{e}_{2}\right)=\mathbf{v}$. Find the matrix of T.
(2) Assume instead that $T(\mathbf{a})=\mathbf{u}$ and $T(\mathbf{b})=\mathbf{v}$. Find the matrix of T. Hint: why is T alsodetermined completely here?

