Worksheet 5 (Feb. 1)

DIS 119/120 GSI Xiaohan Yan

1 Review

Recall from last time

- linear independence, how to check;
- matrix-vector product.

Theorem 1. (Solution of inhomogeneous linear system)
Let $\mathbf{x}=\mathbf{x}_{\text {prt }}$ be one particular solution of $A \mathbf{x}=\mathbf{b}$, then any solution of $A \mathbf{x}=\mathbf{b}$ can be written as

$$
\mathbf{x}=\mathbf{x}_{p r t}+\mathbf{x}_{h m g},
$$

for some solution $\mathbf{x}_{h m g}$ of the homogeneous system $A \mathbf{x}=\mathbf{0}$, and vice versa.

2 Problems

Example 1. True or false.
() The columns of any 4×5 matrix are linearly dependent.
() The columns of a matrix A are linearly dependent if the equation $A \mathbf{x}=\mathbf{0}$ is consistent.
() If A is a 2×5 matrix with two pivot positions, $A \mathbf{x}=\mathbf{b}$ is consistent for any $b \in \mathbb{R}^{2}$.
() Two vectors are linearly dependent if and only if geometrically they lie on the same line through the origin.
() The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly dependent if $\mathbf{v}_{3}=\mathbf{0}$.
() If the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly dependent for any \mathbf{v}_{4}.

Example 2. Consider

$$
A=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

and solve the two linear systems

$$
\text { (a) } A \mathbf{x}=\mathbf{0} . \quad(b) A \mathbf{x}=\mathbf{b}
$$

Example 3. Compute the matrix-vector multiplication

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{l}
7 \\
8 \\
9
\end{array}\right)
$$

Remark 1. With a view toward future lectures: Regarding vector as a $n \times 1$ matrix, then we actually defined the product of an $m \times n$ matrix and an $n \times 1$ matrix as an $m \times 1$ matrix. (In our example above, $m=2$ and $n=3$.) Can we generalize the definition to multiplication of an $m \times n$ matrix with an $n \times p$ matrix? The answer should be $m \times p$.

