Worksheet 5 (Feb. 1)

DIS 119/120 GSI Xiaohan Yan

1 Review

Recall from last time

- linear independence, how to check;
- matrix-vector product.

Theorem 1. (Solution of inhomogeneous linear system) Let $\mathbf{x} = \mathbf{x}_{prt}$ be one particular solution of $A\mathbf{x} = \mathbf{b}$, then any solution of $A\mathbf{x} = \mathbf{b}$ can be written as

 $\mathbf{x} = \mathbf{x}_{prt} + \mathbf{x}_{hmg},$

for some solution \mathbf{x}_{hmg} of the homogeneous system $A\mathbf{x} = \mathbf{0}$, and vice versa.

2 Problems

Example 1. True or false.

- () The columns of any 4×5 matrix are linearly dependent.
- () The columns of a matrix A are linearly dependent if the equation $A\mathbf{x} = \mathbf{0}$ is consistent.
- If A is a 2 × 5 matrix with two pivot positions, Ax = b is consistent for any b ∈ ℝ².
- () Two vectors are linearly dependent if and only if geometrically they lie on the same line through the origin.
- () The vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are linearly dependent if $\mathbf{v}_3 = \mathbf{0}$.
- () If the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent, then $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are linearly dependent for any \mathbf{v}_4 .

Example 2. Consider

$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$

and solve the two linear systems

$$(a)A\mathbf{x} = \mathbf{0}.$$
 (b) $A\mathbf{x} = \mathbf{b}.$

Example 3. Compute the matrix-vector multiplication

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}.$$

Remark 1. With a view toward future lectures: Regarding vector as a $n \times 1$ matrix, then we actually defined the product of an $m \times n$ matrix and an $n \times 1$ matrix as an $m \times 1$ matrix. (In our example above, m = 2 and n = 3.) Can we generalize the definition to multiplication of an $m \times n$ matrix with an $n \times p$ matrix? The answer should be $m \times p$.