Worksheet 4 (Jan. 29)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- matrix-vector product;
- 4 equivalent ways of writing a linear system, homogeneous system, inhomogeneous system;
- linear independence.

METHODS AND IDEAS

- Expanded criterion for uniqueness: provided that solutions of a linear system $A \mathbf{x}=\mathbf{b}$ exist, its solution is unique \Leftrightarrow the homogenized system $A \mathbf{x}=\mathbf{0}$ has unique solution (the trivial solution $\mathbf{0}) \Leftrightarrow$ the column vectors of its coefficient matrix A are linear independent \Leftrightarrow all columns of A have pivot positions (i.e. no free variable) in REF. [See the P12 of the professor's notes for a beautiful chart.]
- Solution sets of $A \mathbf{x}=\mathbf{b}$ and of $A \mathbf{x}=\mathbf{0}$ in \mathbb{R}^{m} are "parallel planes", when both systems are consistent.

Remark 1. In general, if a homogeneous system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution, then an inhomogeneous system $A \mathbf{x}=\mathbf{b}$ with the same coefficient matrix can have 0 or 1 solution.

Remark 2. By the relation between the coefficient matrix and its column vectors, for the set of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$ in \mathbb{R}^{m}, they cannot be independent if $n>m$, and they cannot span the entire \mathbb{R}^{m} if $n<m$. Moreover, if $m=n$, then:

$$
\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n} \text { are linearly independent } \Leftrightarrow \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}=\mathbb{R}^{m} .
$$

2 Problems

Example 1. Consider vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ in \mathbb{R}^{3}

$$
\mathbf{u}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}
2 \\
-2 \\
4
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

Are they linear independent? Can \mathbf{u}_{3} be written as a linear combination of the other two?

Example 2. Discuss: about linear dependence. Note that for determining linear independence it does not matter whether you are picturing these vectors in \mathbb{R}^{3} or \mathbb{R}^{100}, as the extra "directions" are irrelevant here.
(a) If the set of a single vector $\{\mathbf{v}\}$ is linearly dependent, what do we know of v?
(b) If the set of two vectors $\{\mathbf{u}, \mathbf{v}\}$ is linearly dependent, what do we know of \mathbf{u}, \mathbf{v} ?
(c) If the set of three vectors $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent, what do we know of $\mathbf{u}, \mathbf{v}, \mathbf{w}$?

Example 3. Find possible values of c such that the following three vectors are linearly dependent

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
5 \\
3
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
c \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
3 \\
3 \\
c
\end{array}\right] .
$$

