Worksheet 4 (Jan. 29)

DIS 119/120 GSI Xiaohan Yan

1 Review

DEFINITIONS

- matrix-vector product;
- 4 equivalent ways of writing a linear system, homogeneous system, inhomogeneous system;
- linear independence.

METHODS AND IDEAS

- Expanded criterion for uniqueness: provided that solutions of a linear system $A\mathbf{x} = \mathbf{b}$ exist, its solution is unique \Leftrightarrow the homogenized system $A\mathbf{x} = \mathbf{0}$ has unique solution (the trivial solution $\mathbf{0}$) \Leftrightarrow the column vectors of its coefficient matrix A are linear independent \Leftrightarrow all columns of A have pivot positions (i.e. no free variable) in **REF**. [See the P12 of the professor's notes for a beautiful chart.]
- Solution sets of $A\mathbf{x} = \mathbf{b}$ and of $A\mathbf{x} = \mathbf{0}$ in \mathbb{R}^m are "parallel planes", when both systems are consistent.

Remark 1. In general, if a homogeneous system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, then an inhomogeneous system $A\mathbf{x} = \mathbf{b}$ with the same coefficient matrix can have 0 or 1 solution.

Remark 2. By the relation between the coefficient matrix and its column vectors, for the set of vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ in \mathbb{R}^m , they cannot be independent if n > m, and they cannot span the entire \mathbb{R}^m if n < m. Moreover, if m = n, then:

 $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ are linearly independent \Leftrightarrow span $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\} = \mathbb{R}^m$.

2 Problems

Example 1. Consider vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ in \mathbb{R}^3

$$\mathbf{u}_1 = \begin{bmatrix} -1\\1\\2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 2\\-2\\4 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Are they linear independent? Can \mathbf{u}_3 be written as a linear combination of the other two?

Example 2. Discuss: about linear dependence. Note that for determining linear independence it does not matter whether you are picturing these vectors in \mathbb{R}^3 or \mathbb{R}^{100} , as the extra "directions" are irrelevant here.

(a) If the set of a single vector $\{\mathbf{v}\}$ is linearly dependent, what do we know of $\mathbf{v}?$

(b) If the set of two vectors $\{\mathbf{u}, \mathbf{v}\}$ is linearly dependent, what do we know of \mathbf{u}, \mathbf{v} ?

(c) If the set of three vectors $\{\mathbf{u},\mathbf{v},\mathbf{w}\}$ is linearly dependent, what do we know of $\mathbf{u},\mathbf{v},\mathbf{w}?$

Example 3. Find possible values of c such that the following three vectors are linearly dependent

$$\mathbf{v}_1 = \begin{bmatrix} 2\\5\\3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1\\c\\1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 3\\3\\c \end{bmatrix}.$$